摘要:
A gaussian frequency shift keying (GFSK) detector comprising a multi-symbol detector; at least three Viterbi decoders, and a timing adjustment module. The multi-symbol detector receives a series of samples representing a received GFSK modulated signal which comprises at least three samples per symbol; and generates, for each set of samples representing an N-symbol sequence of the GFSK modulated signal, at least three sets of soft decisions values, each set of soft decision values indicating the probability that the N-symbol sequence of samples is each possible N-symbol pattern based on a different one of the at least three samples of a symbol being a centre sample of the symbol. Each Viterbi decoder generates, for each N-symbol sequence, a path metric for each possible N-symbol pattern from a different set of soft decision values according to a Viterbi decoding algorithm. The timing adjustment module generates a timing adjustment signal based on the path metrics generated by the Viterbi decoders to adjust the sample timing.
摘要:
Channel state information (CSI) scaling modules for use in a demodulator configured to demodulate a signal received over a transmission channel, the demodulator comprising a soft decision error corrector (e.g. LDPC decoder) configured to decode data carried on data symbols of the received signal based on CSI values. The CSI scaling module is configured to monitor the performance of the soft decision error corrector and in response to determining the performance of the soft decision error corrector is below a predetermined level, dynamically select a new CSI scaling factor based on the performance of the soft decision error corrector.
摘要:
A non-data-aided method of calculating an estimate of the SFO is described herein. The method involves performing a plurality of correlations between two identical sized groups of samples within a received signal where the spacing of the groups is varied for each correlation. In various examples the number of samples in the groups is also varied. For larger symbols, the group of samples may comprise approximately the same number of samples as the guard interval in a symbol and for smaller symbols, the group of samples may comprise approximately the same number of samples as an entire symbol. An estimate of the SFO is determined by identifying the largest correlation result obtained from all the correlations performed. The largest correlation result indicates the largest correlation.
摘要:
A non-data-aided method of calculating an estimate of the SFO is described herein. The method involves performing a plurality of correlations between two identical sized groups of samples within a received signal where the spacing of the groups is varied for each correlation. In various examples the number of samples in the groups is also varied. For larger symbols, the group of samples may comprise approximately the same number of samples as the guard interval in a symbol and for smaller symbols, the group of samples may comprise approximately the same number of samples as an entire symbol. An estimate of the SFO is determined by identifying the largest correlation result obtained from all the correlations performed. The largest correlation result indicates the largest correlation.
摘要:
A gaussian frequency shift keying (GFSK) detector for decoding a GFSK signal. The detector includes: a multi-symbol detector and a Viterbi decoder. The multi-symbol detector is configured to: receive a series of samples representing a received GFSK modulated signal; and generate, for each set of samples representing an N-symbol sequence of the GFSK modulated signal, a plurality of soft decision values that indicate the probability that the N-symbol sequence is each possible N-symbol pattern, wherein N is an integer greater than or equal to two. The Viterbi decoder is configured to estimate each N-symbol sequence using a Viterbi decoding algorithm wherein the soft decision values for the N-symbol sequence are used as branch metrics in the Viterbi decoding algorithm.
摘要:
Methods and OFDM receivers for decoding an OFDM signal. The method includes estimating a channel impulse response from a pilot-dense symbol of the OFDM signal for each of a plurality of potential FFT window positions; determining a noise floor of each of the channel impulse responses; selecting the potential window position corresponding to the channel impulse response with the lowest noise floor as an optimum FFT window position; and decoding symbols of the OFDM signal using the optimum FFT window position. To be accompanied, when published, by FIG. 5 of the accompanying drawings.