摘要:
Methods for implementing mini-mezzanine Open Compute Project (OCP) plug-and-play Network PHY Cards (104) and associated apparatus. In accordance with one aspect, the MAC (Media Access Channel) and PHY (Physical) layer functions (108) in one or more communication protocol stacks are split between a MAC block (108) in a Platform Controller Hub (PCH) (102) or processor SoC (102) and a PHY card (104) installed in a mezzanine slot (106) of a platform and including one or more ports. During platform initialization operations, configuration parameters are read from the PHY card including a PHY card ID (118), and a corresponding configuration script (116) is selected and executed to configure the PHY card (104) for use in the platform. The configuration parameters (116) are also used to enumerate PCIe devices associated with physical functions and ports supported by the PHY card (104).
摘要:
Examples described herein relate to a switch device for a rack of two or more physical servers, wherein the switch device is coupled to the two or more physical servers and the switch device performs packet protocol processing termination for received packets and provides payload data from the received packets without a received packet header to a destination buffer of a destination physical server in the rack. In some examples, the switch device comprises at least one central processing unit, the at least one central processing unit is to execute packet processing operations on the received packets. In some examples, a physical server executes at least one virtualized execution environments (VEE) and the at least one central processing unit executes a VEE for packet processing of packets with data to be accessed by the physical server that executes the VEE.
摘要:
Methods for implementing mini-mezzanine Open Compute Project (OCP) plug-and-play Network PHY Cards and associated apparatus. In accordance with one aspect, the MAC (Media Access Channel) and PHY (Physical) layer functions in one or more communication protocol stacks are split between a MAC block in a Platform Controller Hub (PCH) or processor SoC and a PHY card installed in a mezzanine slot of a platform and including one or more ports. During platform initialization operations, configuration parameters are read from the PHY card including a PHY card ID, and a corresponding configuration script is selected and executed to configure the PHY card for use in the platform. The configuration parameters are also used to enumerate PCIe devices associated with physical functions and ports supported by the PHY card.
摘要:
Technologies for pacing transmission of network packets by a computing device to a remote computing device include performing a segmentation offload operation to segment a payload of a network packet into a plurality of network packet segments in response to a determination that a size of the payload is greater than a maximum allowable payload size. The computing device additionally determines a packet pacing interval and transmits the plurality of network packet segments to the remote computing device at a transmission rate based on the packet pacing interval.
摘要:
Generally discussed herein are systems, devices, and methods for network security monitoring (NSM). A hardware queue manager (HQM) may include an input interface to receive first data from at least a first worker thread, queue duplication circuitry to generate a copy of at least a portion of the first data to create first copied data, and an output interface to (a) provide the first copied data to a second worker thread, and/or (b) provide at least a portion of the first data to a third worker thread.
摘要:
Embodiments of the present disclosure are directed toward techniques and configurations for an optical apparatus to control optical power of the light source. In one embodiment, the apparatus may include a transmitter and receiver to transmit and receive optical signals over an optical communication channel, and a controller to cause the transmitter to transmit pulse signals at a first power level and detect a change in optical power in the channel, indicating a presence of a signal from another optical apparatus. The controller may confirm that the detected apparatus is capable of communications at a second power level (greater than the first level) and initiate data transmission at the second level. Upon detection of a failure in the channel, the controller may cause the transmitter to halt the data transmission and restart the pulse signals at the first power level. Other embodiments may be described and/or claimed.