摘要:
In a trellis-coded modulation (TCM) transmission system, data bits are grouped into bit blocks (13), and each such bit block is encoded to select a fixed number w of symbols from a given symbol set (14). The symbols are subdivided into subsets, and each subset includes a few outer symbols and a greater number of inner symbols. Each symbol represents one particular transmission signal value. A first portion (17) of each bit block is separated into w bit subgroups, each of which is separately expanded by a convolutional encoder (20) to obtain a bit combination (19, 15) for specifying one of the symbol subsets. The remaining portion (21) of each bit block is expanded by a block coder (22) to obtain w bit subgroups (23), each being a bit combination (25, 16) for selecting one particular symbol out of a specified subset; outer symbols are selected less frequently than inner symbols (e.g. one outer symbol per bit block). The arrangement allows to transmit a non-integer number of data bits per symbol, and further allows to operate with single-symbol TCM, i.e. transmitting and decoding each symbol separately.
摘要:
In digital data transmission and storage, binary data strings are encoded into symbols from a quaternary alphabet by a specific inventive use of finite-state machines. The novel, high-rate quaternary codes offer spectral shaping properties together with a significant increase in noise margin when used on channels which lend themselves to partial-response shaping. In principle, the encoding occurs in three steps: a u-state transition diagram (fig 2 ) generates quaternary symbols whose running digital sum assumes values from a given set; the u-state transition diagram is converted into a v-state machine (fig 3) each of the v states being associated with a number of transitions sufficient to encode the input data bytes into output code words; finally, the v-state machine is switched into a next state depending on its current state and the last encoded input data byte.