摘要:
The invention relates to a device (2) for driving a handrail (6) for an escalator (40) or for driving a handrail (6) for a moving walkway, the device comprising a drive belt (1) guided along a contact zone (10) and deflected on a deflection roller (7) after passing through the contact zone (10). The handrail (6) can be guided resting against the drive belt (1) along the entire contact zone (10) and can be driven by the drive belt (1) by means of friction between drive belt (1) and handrail (6). The device (2) comprises a deflection element (16), which deflection element (16) ensures that a lift-off point (18) of the handrail (6) from the drive belt (1) delimiting the contact zone (10) is arranged upstream of the deflection region of the drive belt (1) on the deflection roller (7). According to the invention, an escalator (40) or a moving walkway can be modernized with such a device (2).
摘要:
The invention relates to a clinching tool (20) for establishing a load-bearing, or supporting, or stable connection of a first metal workpiece (11) to a second metal workpiece (12). The clinching tool (20) comprises a male die (20) and a female die (30), which together form and join a clinching connection (13) connecting, or permanently connecting, the first metal workpiece (11) to the second metal workpiece (12), via local, plastic deformation or reshaping. The male die (20) has a die having a flank (25) disposed concentrically to the rotational axis (24). The flank (25) has a face surface (23) that is positioned perpendicular to the rotational axis (24). The flank (25) is conically shaped at least in the lower transitional region (21) to the face surface (23) and has a flank angle (W, W1, W2) that is smaller than, or equal to, 10 degrees, preferably smaller than, or equal to, 5 degrees.
摘要:
The invention relates to a method for the production of a load-bearing structural steel connection, wherein a clinching connection (13) is formed by means of a male die (20) and a female die (30) using local deformation, the connection connecting a first metal workpiece (6.1, 6.2) to a second metal workpiece (6.3, 6.4). For this purpose, the first metal workpiece (6.1, 6.2) and the second metal workpiece (6.3, 6.4) are first placed on top of each other on a processing surface of the female die and aligned. Subsequently the die of the male die is applied and lowered into the two metal workpieces (6.1, 6.2; 6.3, 6.4) placed on top of each other until the clinching connection (13) has been formed by plastic deformation. The first metal workpiece (6.1, 6.2) has a first workpiece thickness (tl), and the second metal workpiece (6.3, 6.4) has a second workpiece thickness (t2) that together result in a total workpiece thickness (tt), which is greater than 8 mm. The die is configured in a rotationally symmetrical manner with regard to the rotational axis (24) thereof and has a conically shaped transitional region (21, 22) tapering at an angle (W, W1, W2) in the lowering direction of the die.
摘要:
The invention relates to a hand rail (5) comprising hand rail members (5.1), which is moved past a sensor carrier (11.1) comprising at least one sensor (10). Each hand rail member (5.1) has a collar (5.11) which extends into the adjacent hand rail member (5.1). The hand rail members (5.1) articulated to a second conveyor chain (8) can move relative to the adjacent hand rail members (5.1) without a gap forming between two adjacent hand rail members (5.1). Merely a segment groove (5.12) develops between two adjacent hand rail members (5.1), the depth of said groove being so small that that fingers do not become jammed. The sensor (10) can detect each segment groove (5.12) and defective hand rail members (5.1). By means of the sensor signal, it is possible to determine operating variables such as speed, acceleration, deceleration of the hand rail (5) and/or detect dangerous operating states.
摘要:
The invention relates to a method for the production of a load-bearing structural steel connection, wherein a clinching connection (13) is formed by means of a male die (20) and a female die (30) using local deformation, the connection connecting a first metal workpiece (6.1, 6.2) to a second metal workpiece (6.3, 6.4). For this purpose, the first metal workpiece (6.1, 6.2) and the second metal workpiece (6.3, 6.4) are first placed on top of each other on a processing surface of the female die and aligned. Subsequently the die of the male die is applied and lowered into the two metal workpieces (6.1, 6.2; 6.3, 6.4) placed on top of each other until the clinching connection (13) has been formed by plastic deformation. The first metal workpiece (6.1, 6.2) has a first workpiece thickness (tl), and the second metal workpiece (6.3, 6.4) has a second workpiece thickness (t2) that together result in a total workpiece thickness (tt), which is greater than 8 mm. The die is configured in a rotationally symmetrical manner with regard to the rotational axis (24) thereof and has a conically shaped transitional region (21, 22) tapering at an angle (W, W1, W2) in the lowering direction of the die.
摘要:
The step (1) comprises cheeks (5) which are manufactured from deep drawing sheet metal, and a tread element (22) and a deep drawn seating element (24). The arc (BO1) of the seating element (24) follows a first radius (R1) in the upper region and a second radius (R2) in the lower region, wherein the second radius (R2) is somewhat smaller than the first radius (R1). The sheet (BO1) of the seating element (24) merges smoothly at the line (ÜR) from one radius into the other radius. By way of the two radii (R1, R2), the size of the step gap between the tread element (22) and the seating element (24) of the adjacent step is independent of the position of the step gap; the step gap always remains very small, for example smaller than 2.8 mm. As a result, the risk of clothing items, sharp objects, shoes, children's fingers and so on getting jammed is reduced considerably.