摘要:
To provide an inexpensive hydrogen storage tank while the safety is ensured. A hydrogen storage tank 10 includes a liner layer 12 to store hydrogen and a carbon fiber reinforced plastic layer 14 disposed outside the liner layer 12. The liner layer 12 is formed from a low-alloy steel, and the carbon fiber forming the carbon fiber reinforced plastic layer 14 is a pitch based carbon fiber.
摘要:
There is provided a high-strength hot-dip galvanized steel sheet having excellent formability, the steel sheet eliminating special pre-structure control and capable of being produced by using a hot-dip galvanized steel-sheet production line that is not capable of sufficiently ensuring an austempering time after annealing. A high-strength hot-dip galvanized steel sheet includes, on the basis of mass percent, 0.05-0.3% C, 1.4% or less (including 0%) Si, 0.08%-3% Mn, 0.003-0.1% P, 0.07% or less S, 0.1-2.5% Al, 0.1-0.5% Cr, and 0.007% or less N, Si + Al ‰¥ 0.5%, and the balance being Fe and incidental impurities, wherein the steel sheet has a retained austenite content of 3% or more by volume fraction, and wherein the average aspect ratio of retained austenite grains is 2.5 or less.
摘要:
A high tensile-strength galvanized steel sheet, comprising: C: at least 0.05% but less than 0.12%, Si: at least 0.01% but less than 0.35%, Mn: 2.0% to 3.5%, P: 0.001% to 0.020%, S: 0.0001% to 0.0030%, Al: 0.005% to 0.1%, N: 0.0001% to 0.0060%, Cr: more than 0.5% but not more than 2.0%, Mo: 0.01% to 0.50%, Ti: 0.010% to 0.080%, Nb: 0.010% to 0.080%, and B: 0.0001% to 0.0030%, the remainder being Fe and unavoidable impurities, wherein the high tensile-strength galvanized steel sheet has a microstructure that contains 20% to 70% by volume ferrite having an average grain size of 5 µm or less. The high tensile-strength galvanized steel sheet has a tensile strength of at least 980 MPa, and excellent formability and weldability.
摘要:
Provided is a gas-phase hydrogen permeation test device capable of safely measuring hydrogen permeation behavior in a material under a high-pressure hydrogen atmosphere. The gas-phase hydrogen permeation test device includes a high-pressure hydrogen feeder, an analyzer, a primary-side pipe, a secondary-side pipe, a secondary-side pressure gauge, a primary-side shut-off valve, a primary-side discharge valve, a secondary-side discharge valve, a passive discharger, a secondary-side shut-off valve, and a controller configured to, when the pressure measured by the secondary-side pressure gauge reaches or exceeds a specific value, place the primary-side shut-off valve and the secondary-side shut-off valve into a closed state and the primary-side discharge valve and the secondary-side discharge valve into an open state, in which the primary-side shut-off valve, the primary-side discharge valve, and the secondary-side discharge valve are air-operated valves, the passive discharger is either or both of a safety valve and a rupture disk, the high-pressure hydrogen feeder, the primary-side pipe, the primary-side shut-off valve, the primary-side discharge valve, the passive discharger, the test piece, and the secondary-side discharge valve are installed in an explosion-proof environment, and the analyzer is installed in a non-explosion-proof environment.
摘要:
Provided are a steel material and a hydrogen container that achieves a lower fatigue crack propagation rate in a high-pressure hydrogen atmosphere than steels used in the related art, a method for producing the steel material, and a method for producing the hydrogen container. The steel material includes: a composition containing, by mass, C: 0.05% to 0.60%, Si: 0.01% to 2.0%, Mn: 0.3% to 3.0%, P: 0.001% to 0.040%, S: 0.0001% to 0.010%, N: 0.0001% to 0.0060%, Al: 0.01% to 1.5%, one or more elements selected from Ti: 0.01% to 0.20%, Nb: 0.01% to 0.20%, and V: 0.01% or more and less than 0.05%, and one or more elements selected from B: 0.0001% to 0.01%, Mo: 0.005% to 2.0%, and Cr: 0.005% to 3.0%, with the balance being Fe and inevitable impurities; and a steel microstructure that includes 95% or more of tempered martensite on a volume fraction basis, that includes a precipitate having a diameter of 100 nm or less and including one or more elements selected from Ti, Nb, and V and one or more elements selected from carbon and nitrogen at a density of 50 particles/µm 2 or more, and that includes prior austenite having a grain diameter of 3 µm or more.