摘要:
Techniques for utilizing a microscope inspection system (100) capable of inspecting specimens (112) at high throughput rates are described. The inspection system achieves the higher throughput rates by utilizing more than one detector array (116) and a large field of view to scan the surface of the semiconductor wafers. The microscope inspection system also has high magnification capabilities, a high numerical aperture, and a large field of view. By using more than one detector array, more surface area of a wafer can be inspected during each scanning swath across the semiconductor wafers. The microscope inspection system is configured to have a larger field of view so that the multiple detector arrays can be properly utilized. Additionally, special arrangements of reflective and/or refractive surfaces are used in order to fit the detector arrays within the physical constraints of the inspection system.
摘要:
All-reflective optical systems for broadband wafer inspection are provided. One system configured to inspect a wafer includes an optical subsystem. All light-directing components of the optical subsystem are reflective optical components except for one or more refractive optical components, which are located only in substantially collimated space. The refractive optical component(s) may include, for example, a refractive beamsplitter element that can be used to separate illumination and collection pupils. The optical subsystem may also include one or more reflective optical components located in substantially collimated space. The optical subsystem is configured for inspection of the wafer across a waveband of greater than 20 nm. In some embodiments, the optical subsystem is configured for inspection of the wafer at wavelengths less than and greater than 200 nm.