Abstract:
In a measuring probe (40) according to the present invention, measuring light is incident onto a single fiber (13C, 14C, 15C) before being received by a light-receiving sensor (13B, 14B, 15B) through an interference filter (13A, 14A, 15A). The interference filter (13A, 14A, 15A) is formed to obtain a transmittance characteristic corresponding to a measurement parameter, depending on a condition of an intensity distribution with respect to incidents angles of light incident onto the interference filter (13A, 14A, 15A). Thus, the measuring probe (40) according to the present invention can reduce an influence of a deviation in the transmittance characteristic due to incident angles, even with use of the interference filter (13A , 14A, 15A).
Abstract:
In a measuring probe 40, a measuring beam is diffused by a first diffusion plate 19, and when received by a plurality of light-receiving sensors 13B, 14B, 15B via a plurality of interference filters 13A, 14A, 15B, the measuring beam is made incident on the interference filters 13A, 14A, 15B via second diffusion plates 13C, 14C, 15C. Those interference filters 13A, 14A, 15B are formed such that transmittance characteristics corresponding to a measurement parameter are obtained correspondingly to intensity distribution conditions for an angle of incidence of light incident on the interference filters 13A, 14A, 15B. Therefore, the measuring probe 40 can reduce the effect of displacement of the transmission characteristic caused by the angle of incidence, while using the interference filters 13A, 14A, 15B.