摘要:
The fundus observation apparatus 1 has a function to form tomographic images and 3-dimensional images of a fundus Ef by scanning signal light LS as well as a function to form a moving image (observation image K) of a fundus Ef during OCT measurement. Furthermore, the fundus observation apparatus 1 includes an x-correction part 231 and a y-correction part 232 for correcting a position in the fundus surface direction of the 3-dimensional image based on the observation image K, and a z-correction part 233 for correcting the position in the fundus depth direction of a 3-dimensional image, based on a tomographic image Gi of the fundus Ef based on the detection results of interference light LC of separately scanned signal light LS and reference light LR.
摘要:
The fundus observation apparatus 1 has a function to form tomographic images and 3-dimensional images of a fundus Ef by scanning signal light LS as well as a function to form a moving image (observation image K) of a fundus Ef during OCT measurement. Furthermore, the fundus observation apparatus 1 includes an x-correction part 231 and a y-correction part 232 for correcting a position in the fundus surface direction of the 3-dimensional image based on the observation image K, and a z-correction part 233 for correcting the position in the fundus depth direction of a 3-dimensional image, based on a tomographic image Gi of the fundus Ef based on the detection results of interference light LC of separately scanned signal light LS and reference light LR.
摘要:
The controller 210 changes the projection region of the Landolt ring T on the fundus Ef by changing, based on the scanning region R, the relative display position of the Landolt ring T and the fixation target V on the LCD 39, thereby overlapping the scanning region R and the projection region each other. Under this condition, the fundus observation apparatus 1 executes the eyesight measurement and OCT measurement, obtains the eyesight value at the site of interest of the fundus Ef, and forms a tomographic image of the fundus Ef in the scanning region R. The controller 210 stores in the storage 212 the eyesight value at the site of interest and the tomographic image corresponding to the scanning line closest to the measurement position of eyesight while correlating them with each other, and allows them to be displayed on the display device 3.
摘要:
An optical image measuring device 1 splits low-coherence light L0 into signal light LS and reference light LR, and splits an optical path of the reference light LR into two optical paths having different optical path lengths to split the reference light LR into two reference lights LRa, LRb. Furthermore, the optical image measuring device 1 makes the reference lights LRa, LRb interfere with the signal light LS propagated through an eye E, generates an interference light LC reflecting a morphology in each of two depth positions (fundus oculi Ef and cornea Ec) of an eye E, and detects the interference light LC to generate a detection signal. Then, the optical image measuring device 1 forms a fundus oculi tomographic image and a cornea tomographic image based on the detection signals, and analyzes the tomographic images to obtain a distance between the cornea and retina of the eye E.
摘要:
Such an optical image measurement device is provided that is capable of acquiring a clear image even when the intensity of an interference light is low. A fundus oculi observation device 1 is configured to superimpose a signal light LS propagated through a fundus oculi Ef and a reference light LR propagated through a reference mirror 174 to generate an interference light LC, detect the interference light LC, and form an image of the fundus oculi Ef. The device 1 determines whether the intensity of a detection signal of the interference light LC is equal to or more than a predetermined threshold and, when determines that the intensity is less than the predetermined threshold, controls to increase the intensity of the detection signal of the interference light LC. The device 1 forms an image of the fundus oculi Ef based on the detection signal with the increased intensity.
摘要:
A low-coherence light is split into a signal light and a reference light. The optical path length of the reference light is switched to optical path lengths that correspond to a first depth zone and a second depth zone. When forming a tomographic image of the second depth zone, in an optical system that condenses the signal light to the first depth zone when a measured object and an objective lens are located at a predetermined working distance, while being positioned at the working distance, a depth zone switching lens that transitions the depth at which the signal light is condensed to the second depth zone is inserted.
摘要:
A fundus oculi observing device 1 specifies a characteristic site of a fundus oculi Ef depicted in tomographic images of the fundus oculi Ef and, based on the position of the characteristic site within frames FH and FV of the tomographic images, changes a target position of a signal light LS so that the characteristic site is depicted in the center positions within the frames FH and FV and executes a main measurement, thereby forming a tomographic image and/or a three-dimensional image of the fundus oculi Ef.