Abstract:
A material analytical sensor (1) includes an emitter (3) that irradiates a material (2) with irradiation light (P) including a wavelength region related to estimation of an amount of a component of the material (2), a controller (6) that controls an irradiation cycle (T1) of the irradiation light (P), a receiver (4) that receives reflected light (P') from the material to output as a pulse signal (PS) and receives disturbance light (NP) to output as a noise signal (NS), an integrator (5) that samples N pulse signals during a predetermined period (T3) and integrates the sampled N pulse signals to obtain a first integrated value (SU1), and samples N noise signals during a same period as the predetermined period with a same cycle as the irradiation cycle and integrates the sampled N noise signals to obtain a second integrated value (SU2), and an extractor (6) that deducts the second integrated value (SU2) from the first integrated value (SU!) to extract an amount of the reflected light.
Abstract:
The invention provides a laser scanner system, which comprises two or more laser scanners installed on a movable object and a main control device, wherein the laser scanner is arranged as a TOF type which performs distance measurement by rotary projection of a pulsed light, and wherein the main control device produces a selection signal, the laser scanner, which is alternately selected based on the selection signal, performs distance measurement by emitting a pulsed light, wherein the laser scanner, which performs distance measurement at the same time, is a selected one.
Abstract:
A position detector, especially a position detector for carrying our three-dimensional measurement of a target position through irradiation of range-finding light or measurement light and recording image data in the direction of irradiation or other directions. In particular, a position detector comprising a light source part capable of emitting measurement light; an image sensor capable of receiving reflection light; emission means for emitting measurement light and further guiding reflection light to the image sensor; rotation means for rotating the emission means; and an angle detector capable of detecting the direction of emission from the emission means, wherein the light source part and the image sensor are fixedly disposed, and which position detector further comprises a computation part capable of converting coordinates of a deviation of reflector from the central axis on the basis of image sensor output and angle detector output at the time of light receiving.
Abstract:
The present invention provides a surveying instrument (20), comprising a surveying instrument main unit (21) which projects a measuring light to an object to be measured and measures a position based on a reflection light from the object to be measured and an operation device (67) which is removably attached on the surveying instrument main unit, wherein the surveying instrument main unit comprises a distance measuring unit (54) and (55) for emitting the measuring light and for measuring a distance, an image pickup unit (51) and (53) for acquiring an image, a reflection mirror (45) rotatably mounted and used for directing the measuring light toward the object to be measured, for directing the reflected light from the object to be measured toward a light receiving unit, and for directing the image in a projecting direction toward the image pickup unit, a detecting means (31) for detecting a rotating position of the reflection mirror, and a control unit (74) for controlling at least the distance measuring unit, the image pickup unit and the rotating position of the reflection mirror, and wherein the operation device comprises a display unit for displaying the image acquired by the image pickup unit.
Abstract:
The present invention provides a surveying instrument provided with a tracking function, said surveying instrument comprising a first image pickup means 40 with a first solid image pickup element 33, a second image pickup means 37 with a second solid image pickup element 19, an image pickup control instrument for controlling image pickup conditions of said first image pickup means and said second image pickup means, and a control unit for controlling the tracking operation of a target 36 based on a target image signal obtained at the first solid image pickup element or based on a target image signal obtained at the second solid image pickup element, wherein the first image pickup means can acquire an image in wider range by said second image pickup means, and wherein the image pickup control instrument controls so that a target image is acquired by the first image pickup means when the target image is out of a photodetection range of the target of the second solid image pickup element and controls so that the target image is acquired by the second image pickup means when the target image detected by the first solid image pickup element is within the predetermined range.
Abstract:
The invention provides an electro-optical distance meter comprising a light emitting element for emitting a distance measuring light, signal generators for generating two or more proximity frequencies, a modulation signal in which the two or more proximity frequencies are intermitted respectively and converted to pulses with a predetermined width, a projecting optical system for sequentially switching over and projecting intermittent modulated distance measuring light as converted to pulses with predetermined width by the modulation signal, a photodetection unit for receiving a reflected distance measuring light from an object to be measured and producing an intermittent photodetection signal with a predetermined pulse width, a reference signal generator for issuing reference frequency signals having a difference of a predetermined frequency respectively, a frequency converting unit for performing frequency conversion by mixing the intermittent photodetection signals from the photodetection unit and the reference frequency signals, corresponding to each intermittent frequency signals respectively and obtaining intermittent conversion signals with a pulse width, and an arithmetic control unit, wherein the pulse width of the intermittent photodetection signal is set up so as to be longer in a time duration than a period of the intermittent conversion signal, and in a case where the object to be measured is a moving object, the period of the intermittent photodetection signal is set to such speed that a phase change of the intermittent conversion signal due to moving of the moving object can be negligible, wherein the arithmetic control unit is configured so as to calculate a precise measurement distance value by obtaining the phase of the intermittent photodetection signal with respect to the two or more proximity frequencies, to calculate a coarse measurement distance value by obtaining a phase difference between the intermittent conversion signals, and to determine a distance by combining the coarse measurement distance value and the precise measurement distance value.
Abstract:
The invention provides a posture detecting device, which comprises a tilt detecting unit as rotatably supported around two shafts perpendicular each other to an outer frame and for detecting a tilting from the horizontal, encoders provided on each of the shafts, motors provided so as to rotate each shaft, and a first arithmetic processing unit for driving/controlling the motor based on a detection result from the tilt detecting unit, wherein the first arithmetic processing unit drives the motors so that the tilt detecting unit detects the horizontal based on a signal from the tilt detecting unit when the outer frame is tilted and calculates a posture of the outer frame based on outputs of the encoders when the tilt detecting unit detects the horizontal.