Abstract:
The present disclosure relates to the field of optical systems, in particular to an atomic emission spectrometer. The envisaged multi-scan optical system (100) is compact and stable. The system comprises an excitation source (104), a hydra fiber cable (106), a wavelength selector (103), a dispersive optical element (101), and a detector (102). The excitation source is configured to emit composite light. The hydra fiber cable has a head and a plurality of tentacles, and is configured to receive the composite light via a second lens. The plurality of tentacles is configured to emit the composite light towards the wavelength selector which includes a plurality of optical slits (s1 - s8) and a plurality of shutters. The wavelength selector is configured to selectively collect and filter the composite light directed by a first lens and the plurality of tentacles by means of the plurality of shutters. The detector is configured to detect the plurality of spectral line scans reflected by the dispersive optical element for spectrometric analysis.
Abstract:
The present invention concerns a method and camera for obtaining a high-contrast image of a predetermined target present in an area under observation. The method involves obtaining an in-band image of the observation area including the target using a filter whose bands are aligned with selected characteristic wavelength bands of the target and an out-of-band image of the observation area excluding the target using the filter with its bands non-aligned with the selected characteristic wavelength bands of the target. Processing of the in-band and out-of-band images results in a high-contrast image highlighting the presence of the target in the observation area and thereby allowing its detection and monitoring.
Abstract:
A multi-mode imaging spectrometer that incorporates two orthogonally positioned entrance slits and is configurable between a first mode in which the system produces images of relatively wide spatial coverage with moderate spectral resolution, using a first one of the two slits, and a second mode in which the system produces images of a smaller spatial area with fine spectral resolution, using the other one of the two slits.
Abstract:
A transient grating (TG) is used as an optical gating element with sub-picosecond time resolution for luminescence measurements from a photo-detector array. The transient grating is formed in a gate medium by one or more pulsed gate beams. For photoluminescence measurements such as photoluminescence spectroscopy or imaging, a source is excited by a pulsed excitation beam, and the pulsed gate beams are synchronized to the pulsed excitation beam with an adjustable delay between the excitation of the source and the formation of the TG. Moreover, a source or its spectra can be imaged at two different regions of the photo-detector array at two different times spaced in time by a selected duration of time with sub-picosecond resolution over a range of a nanosecond or more. A beam from the source is deflected to the different regions by changing the frequency or geometry of the pulsed gate beams.
Abstract:
A divided-aperture infrared spectral imaging (DAISI) system that is structured to provide identification of target chemical content in a single imaging shot based on spectrally-multiplexed operation. The system is devoid of spectral scanning acquisition of infrared (IR) spectral signatures of target content with an IR detector and does not require content.
Abstract:
Optical computing devices are disclosed. One exemplary optical computing device (300) includes an electromagnetic radiation source (308) configured to optically interact with a sample (306) and at least two integrated computational elements (302, 304). The at least two integrated computational elements are configured to produce optically interacted light (314), and at least one of the at least two integrated computational elements is configured to be disassociated with a characteristic of the sample. The optical computing device further includes a first detector (316) arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.