摘要:
A vehicle position measurement system (100) and method to determine the (relative) position of a vehicle (110) and an object (120) are proposed. The system comprises at least two light sources (131, 132) capable of emitting light and positioned at a predetermined distance (140) to each other. Furthermore the system comprises at least one detector (150 / 151, 152) capable of measuring the light emitted. The light emitted by the light sources comprises synchronized light source identification codes. The detector is arranged to determine the position of the vehicle (110) and object (120) on the basis of a phase-difference measurement between the light originating from the individual light sources (131, 132) and a comparison phase. The vehicle (110) may comprise the at least two light sources (131, 132) and the detector (151, 152), while the phase-difference is measured between light reflected from the object (120) and the comparison phase. Alternatively, the vehicle (110) may comprise the at least two light sources (131, 132) while the object (120) comprises the detector (150) and the detector is arranged to obtain the comparison phase from the light received from one of the light sources (131, 132). The object may be a vehicle.
摘要:
The present invention relates to light-based communication, and more particularly it relates to methods for configuration of at least one remote light-sensing device, to a central light-emitting unit and to a light-sensing device. According to the invention, spatial configuration of remote light-sensing devices (e.g. peripherals such as loudspeakers or light devices), will be achieved by transmission of embedded identifiers or configuration information in light emitted in a plurality of directions from a central light-emitting unit. With a different identifier or different configuration information for each direction of transmission, the directions can be distinguished from each other. The invention enables a user to place remote light-sensing devices in a desired spatial position and the central light-emitting unit will be able to determine location and spatial function, i.e. for example whether the peripheral is an audio device and/or a lighting device. As a result, the peripherals will be correctly configured without any user interaction required.
摘要:
This invention relates to a color controlled light source comprising a plurality of colored light elements; a detector for detecting the light output of the light source and generating a detection signal; and a color control unit for generating driving signals to said light elements on the basis of said detection signal and a predetermined target color point of the light output of the light source. In order to enable detection of contributions from individual light elements to the light output of the light source, the light source further comprises a modulator for individual signature modulation of the driving signal to each one of said light elements; and a corresponding demodulator for demodulation of said detection signal and generation of actual, i.e. measured, values of the output of the individual light elements. The color control unit determines nominal values of the light output of each light element for obtaining said target color point, and compares the actual values with the nominal values. If there is a difference, it adjusts the driving signals in order to minimize the difference.
摘要:
The invention relates to an illumination device connectable to an AC voltage source for applying an alternating voltage during a series of time intervals. The illumination device comprises at least a first light source and a second light source, arranged to be connected in series to the AC voltage source, to generate a luminance output in response to the alternating voltage. Selection means are provided configured for selectively applying the alternating voltage over the first light source or the first and second light source. A controller is provided for controlling the selection means in response to a data signal comprising data symbols such that one or more of the data symbols are contained in said luminance output. The invention also relates to a method of embedding one or more data symbols in the luminance output of such an illumination device, an optical receiver and an illumination system.
摘要:
The invention relates to a wireless remote controlled device selection system for selecting devices. Signal processing provides information for a remote control device. This information is indicative of the angle between the remote control device and the various devices from which a device should be selected. By comparing the angular deviations, the desired device can be selected.
摘要:
Proposed is a light module (110) comprising at least two primary light sources (111,112,113) capable of emitting a primary color light. This allows the light module to emit light having intensity (Y) and color coordinates (x,y) through additive color mixing of the constituent primary colors. The light module further comprises an modulator (115) capable of modulating the primary light sources enabling embedment of data in the light emitted. The modulator (115) is arranged to modulate the color coordinates of the light emitted for embedding the data. This is especially advantageous as the sensitivity of the human eye to changes in color is lower than to changes in intensity. The invention thus advantageously allows embedding the data into the light emitted from the light modules (110) of an illumination system (100) without reducing the performance of its primary function as an aid to human vision.
摘要:
A controller for a lighting arrangement (14) is provided, comprising a detector unit (12) having a field of view (20) and a pointing direction (21). The controller furthermore comprises an interface unit (11) for interfacing with the lighting arrangement (14), and a processing unit (10) connected to the detector unit (12) and the interface unit (11). The detector unit (12) is arranged to provide detection data comprising parameters related to one or more identifiable beacons (2) within the field of view (20) of the detector unit (12). The processing unit (10) is arranged to associate the detection data with a set of lighting parameters for the lighting arrangement (14) and to control the lighting arrangement (14) via the interface unit (11) in accordance with the set of lighting parameters. Also a method of controlling alighting arrangement is provided.