摘要:
In some embodiments, ultrasound receive beamforming yields beamformed samples, based upon which spatially intermediate pixels (232, 242, 244) are dynamically reconstructed. The samples have been correspondingly derived from acquisition through respectively different acoustic windows (218, 220). The reconstructing is further based on temporal weighting of the samples. In some embodiments, the sampling is via synchronized ultrasound phased-array data acquisition from a pair of side-by-side, spaced apart (211) acoustic windows respectively facing opposite sides of a central region (244) to be imaged. In particular, the pair is used interleavingly to dynamically scan jointly in a single lateral direction in imaging the region. The acquisition in the scan is, along a synchronization line (222) extending laterally across the region, monotonically progressive in that direction. Rotational scans respectively from the window pair are synchronizable into a composite scan of a moving object. The synchronization line (222) can be defined by the focuses of the transmits. The progression may strictly increase.
摘要:
In an image compressing ultrasound system, for generating an imaging sample, delays are applied transducer-element-wise to respective time samples. The delayed samples are summed coherently in time, the coherently summed delays being collectively non-focused. An image is sparsified based on imaging samples and, otherwise than merely via said imaging samples, on angles (236) upon which respectively the delays for the generating of the imaging samples are functionally dependent. An image-compressing processor (120) may minimize a first p-norm of a first matrix which is a product of two matrices the content of one representing the image in a compression basis. The minimizing is subject to a constraint that a second p-norm of a difference between a measurement matrix and a product of an image-to-measurement-basis transformation matrix, an image representation dictionary matrix, and the matrix representing the image in the compression basis does not exceed an allowed-error threshold. The measurement matrix is populated either by channel data, or by output of a Hilbert transform applied to the channel data in a time dimension.
摘要:
A temperature monitoring apparatus (40) is disclosed for monitoring a temperature within a tissue (10), in particular during a thermal ablation process. The monitoring apparatus comprises a temperature application unit (42) configured to introduce heating power into the tissue for heating the tissue. The monitoring apparatus further comprises an ultrasound unit (44) for emitting and receiving ultrasound waves and for determining a temperature in the measurement region (22, 24) of the tissue on the basis of ultrasound shear wave detection. The monitoring apparatus further comprises a temperature estimation unit (46) including a heat transfer model (48) for estimating a temperature in a region of interest (26) within the tissue, wherein the heat transfer model is based on medical images of the tissue.
摘要:
Beamforming to image an object (310), such as an interventional tool, is enhanced by initializing the beamformer (308) with the object's location, and optionally its orientation. The initializing uses an estimate of the location/orientation. The estimate is derived from the output of one or more sensors (304, 306). These are disposed external to the imaging array (316) that operates with the beamformer. The estimate is made without the need for a result of any imaging based on data arriving by reflected ultrasound. One or more of the sensors may be attached to the object, which may be elongated, as in the case of a needle or catheter used in medical diagnosis and treatment. In some implementations, one or more of the sensors are attached to the imaging probe (302). The sensors may be, for example, ultrasound, electromagnetic, optical, or shape sensors. Alternatively, ultrasound transmitting transducers may be substituted for the ultrasound sensors.
摘要:
The present invention relates to an ultrasound elastography system (10) for providing an elastography measurement result of an anatomical site (32) a corresponding method. The system (10) is configured to visualize a suitability for shear wave elastography of the region of interest (33) to the user within the ultrasound image (52) and/or to recommend an elastography acquisition plane (48, 50) for conducting shear wave elastography to the user. By this, proper selection of a location for an elastography measurement may be supported.
摘要:
Depiction, within a single imaging modality, of an intervention device and body tissue surrounding the device, is improved by interrogating a subject that includes the intervention device and the tissue. An image is created using,for a parameter, a value, of the parameter (160), better suited to one or the other of a device region depicting the intervention device and a tissue region depicting the tissue. The value is used to yield respectively either a first image (152) or a second image (154). Respective presets may correspondingly have different values for the parameter. From jointly the first image and the second image which are both of the single modality, a combination is formed that is an image of the intervention device depicted as surrounded by the tissue. The combinations may be formed dynamically and ongoingly. An apparatus for the improved depiction may be configured for the use of the parameter in a stage prior to image processing conducted on a scan-converted image (146) if such image processing is employed.