摘要:
Various receiver electrodes for supplying power to a load connected in a capacitive power transfer system are disclosed. In one embodiment, the receiver electrodes include a first conductive plate (212) connected to a first sphere-shaped hinge (211), wherein the first sphere-shaped hinge is coupled to a first receiver electrode (210); and a second conductive plate (222) connected to a second sphere-shaped hinge (221), wherein the second sphere-shaped hinge is coupled to a second receiver electrode (220), the second receiver electrode being connected to an inductor of the capacitive power transfer system and the first receiver electrode being connected to the load, the inductor being connected to the load to resonate the capacitive power transfer system.
摘要:
The invention relates an electrical device for providing an output depending on an electrical input. The electrical device (1) is adapted to provide a constant output, if the electrical input is in a first electrical input range, and a dependent output, if the electrical input is in a second electrical input range, wherein the dependent output depends on the electrical input. The output can therefore remain constant, even if the electrical input, which is preferentially a DC grid voltage, fluctuates within the first electrical input range. Moreover, in the second electrical input range the output can be controlled by just controlling the electrical input like the DC grid voltage, without necessarily requiring an additional control construction of the electrical device. A resistance against fluctuations of the electrical input and a controllability of the output can therefore be realized in a relatively simple way.
摘要:
A resonant matching circuit (310) for matching a resonant frequency of a wireless power transfer system to a frequency of a power signal comprises a switch (311) connected in parallel with a resonant element (302) of the wireless power transfer system; and a controller (312) connected to the switch (311) and configured to detect a zero-voltage level crossing of a signal flowing through the resonant element (302) and to close the switch (311) for a predefined amount of time upon detection of the zero-voltage level crossing, wherein closing the switch (311) for the predefined amount of time adds any one of an inductive value and a capacitive value to the resonant frequency of a wireless power transfer system.
摘要:
A capacitive powering system(100) comprises a low power driver (111), a high power driver (112), a plurality of pairs of transmitter electrodes separated into a plurality of power sub-areas (210-1, 210-N) including at least a group of high power sub-areas (210-1, 210-M) connected to the high power driver and a group of low power sub-areas (210-M+1, 210-N) connected to the low power driver, and an insulating layer (130) having a first side and a second side opposite to each other, the pairs of plurality of transmitter electrodes are coupled to the first side of the insulating layer. The system is configured to forma capacitive impedance between the pairs of plurality of transmitter electrodes and a plurality of pairs of receiver electrodes (141, 144) placed in proximity to the second side of the insulating layer to wirelessly power each load connected to each of the pair of receiver electrodes.
摘要:
An apparatus (300) for supplying power to a load in a capacitive power transfer system comprises a power generator (350) operating at a first frequency; a transmitter comprising a plurality of first electrodes (310) connected to a first terminal of the power generator (350)and a plurality of second electrodes (320) connected to a second terminal of the power generator (350) of a transmitter portion of the apparatus (300); and a plurality of inductors (340), wherein each inductor of the plurality of inductors is connected between a pair of a first electrode and a second electrode of the plurality of first and second electrodes, wherein each inductor comprises,together with a parasitic capacitor (330) formed between each pair of the first electrode and the second electrode,a resonant circuit at the first frequency in order to compensate for current loss due to parasitic capacitances.
摘要:
A direct current (DC) to alternating current (AC) wireless converter apparatus (200) for supplying power to a load connected in a capacitive power transfer system. The apparatus comprises at least two connectors (201, 202) enabling a galvanic contact to at least two supply lines (211, 212) of a DC grid; a driver (203) coupled to the connectors (201, 202) and configured to generate an AC power signal from an input DC signal fed by the at least two connectors, wherein a frequency of the AC power signal substantially matches a series-resonance frequency of the capacitive power transfer system; and at least a pair of transmitter electrodes (204, 205) connected to an output of the driver.
摘要:
A capacitive contactless powering system (100) comprises a pair of receiver electrodes (141, 142) connected to a load (150) through a first inductor (160), wherein the first inductor is coupled to the load to resonate the system; a pair of transmitter electrodes (121, 122) connected to a driver (110); an insulating layer (130) having a first side and a second side opposite each other, wherein the pair of transmitter electrodes are coupled to the first side of the insulating layer and the pair of receiver electrodes are decoupled from the second side of the insulating layer, such that a capacitive impedance is formed between the pair of transmitter electrodes and the pair of receiver electrodes, wherein a power signal generated by the driver is wirelessly transferred from the pair of transmitter electrodes to the pair of receiver electrodes to power the load when a frequency of the power signal matches a series-resonance frequency of the first inductor and the capacitive impedance.
摘要:
Cables (1, 2) comprise first and second conductors (1, 2) for transporting signals to be picked-up in contactless manners. At first/second locations (3, 4), the first and second conductors (1, 2) are at first/second distances from each other. The first locations (3) are neutral locations where the conductors (1, 2) are parallel. The second locations (4) are pick-up locations. The second distances are larger than the first distances. Pick-up devices for picking-up signals in a contactless manner from the cables (1, 2) comprise parts for defining minimum values of the second distances. These parts may comprise core-parts, such as center ends (10) of E-shaped magnetic cores further comprising outer ends (11, 12) and backs (13). Methods for installing pick-up devices comprise steps of at second locations (4) increasing a distance between the first and second conductors (1, 2) from a value of the first distance to a value of the second distance. Twin-cables (1, 2) or twin-lead-cables (1, 2) are suited well for allowing signals to be picked-up in contactless manners.
摘要:
The present invention relates to an electroluminescent device (100) comprising a pair of electroluminescent stacks (101,102), each stack comprising a first electrode layer (103,104), a second electrode layer (105,106) and an electroluminescent layer (107,108) being located between the first and second electrode layers (103-105,104-106), an electrical connection (115,116) between the two stacks (101,102),each of the second electrode layers comprising a conductive plate, the two conductive plates forming a pair of receiver electrodes for capacitive power transfer.
摘要:
Organic light emitting diode arrangement Organic light emitting diode arrangements (1) are, to protect them against an effect of a switch-on, provided with circuits (31-36) for, during a first time interval that follows a switch-on, limiting a current through the organic light emitting diode arrangement (1) more and for, during a second time interval that follows the first time interval, limiting the current less. The circuit (31-36) may be passive such as a negative temperature coefficient resistor (31) or a series inductor (32) possibly with a freewheel diode (40) or may be active such as a switchable resistor (33) that is not bridged during the first time interval and that is bridged during the second time interval or a switchable resistor that is bridged in response to a detection of a value of the current exceeding a threshold value or such as a part of a converter (63) that is controlled in response to a detection of a value of the current.