摘要:
The present invention relates to a method for preparing iron-containing porous organic- inorganic hybrid materials where the organic compound ligand is bonded to a central metal and has a large surface area and pores of molecular size or nano size, by irradiating microwaves instead of heat treatments such as the conventional electric heating, etc. as the heat source of the hydrothermal or solvothermal synthesis reaction, after reacting a metal or metal salt and organic compound to form crystal nuclei by a predetermined pre-treatment operation in the presence of a solvent. In another aspect, a method of the present invention further comprises the step of purifying the obtained porous organic-inorganic hybrid materials by treating them with inorganic salt. In particular, a method of the present invention is characterized by not using a hydrofluoric acid.
摘要:
Disclosed herein is a method of surface-functionalizing a porous organic-inorganic hybrid material or a organic-inorganic mesoporous material, in which organic substances, inorganic substances, ionic liquids and organic-inorganic hybrid substances are selectively functionalized on the coordinatively unsaturated metal sites of a porous organic-inorganic hybrid material or organic-inorganic mesoporous material, and thus the porous organic-inorganic hybrid material can be used for adsorbents, gas storage devices, sensors, membranes, functional thin films, catalysts, catalytic supports, and the like, and the applications of the surface-functionalized porous organic-inorganic hybrid material prepared using the method to catalytic reactions.
摘要:
Disclosed herein is a method of surface-functionalization a porous organic-inorganic hybrid material, in which organic substances, inorganic substances, ionic liquids and organic-inorganic hybrid substances are selectively functionalized in coordinatively unsaturated metal sites of a porous organic-inorganic hybrid material, and thus the porous organic-inorganic hybrid material can be used for adsorbents, gas storage devices, sensors, membranes, functional thin films, catalysts, catalytic supports, and the like, and the applications of a surface functionalized porous organic-inorganic hybrid material prepared using the method to heterogeneous catalytic reactions.