摘要:
Disclosed are a catalyst composition containing a phosphorous-based ligand and a hydroformylation process using the same. More specifically, disclosed are a catalyst composition containing a monodentate phosphite ligand, a monodentate phosphine ligand and a transition metal catalyst, wherein the total content of the entire ligand including the monodentate phosphite ligand and the monodentate phosphine ligand is 1 to 33 moles, based on 1 mole of the transition metal catalyst, and a hydroformylation method using the same. The present invention has an effect of providing a catalyst composition which reduces an N/I (ratio of normal to iso) selectivity of aldehydes produced by hydroformylation of an olefin-based compound and exhibits superior catalytic activity and stability, and a hydroformylation method of an olefin-based compound using the catalyst composition.
摘要:
The present invention relates to a catalyst composition including a phosphorous-based ligand, and a hydroformylation method using the catalyst composition. More particularly, the present invention relates to a catalyst composition, which includes two different kinds of monocoordinated phosphine ligands and a transition metal catalyst, and a hydroformylation method using the catalyst composition. In accordance with the present invention, a catalyst composition lowering a selection ratio of normal aldehyde to iso aldehyde (n/i ratio), which are generated during hydroformylation of an olefinic compound, and exhibiting superior catalytic activity and stability, and a method of hydroformylating an olefinic compound using the catalyst composition are provided.
摘要:
Disclosed are a highly efficient neopentyl glycol preparation method and a device therefor. More particularly, disclosed are a method of preparing neopentyl glycol, wherein the method includes adding a hydroxypivaldehyde solution and hydrogen to a hydrogenation reactor that including a hydrogenation catalyst, wherein the hydroxypivaldehyde solution includes 6 to 30 % by weight of hydroxypivaldehyde, 35 to 70 % by weight of neopentyl glycol, 10 to 30 % by weight of alcohol, and 10 to 30 % by weight of water, and a device therefor. According to the present disclosure, a neopentyl glycol preparation method wherein separate heating is not required in a section of a feed vessel to an inlet of a hydrogenation reactor unlike conventional technologies to save energy, and, at the same time, by-products with a high boiling point are not generated in the section to prevent poisoning of a hydrogenation catalyst in a reactor due to the by-products with a high boiling point and increase a hydrogenation yield, and a device therefor can be provided.