摘要:
An electrolytic cell and a method of electrochemical oxidation of manganese (II) ions to manganese(III) ions in the electrolytic cell are described. The electrolytic cell comprises ( 1 ) an electrolyte solution of manganese(II) ions in a solution of 9 to 15 molar sulfuric acid; (2) a cathode immersed in the electrolyte solution; and (3) an anode immersed in the electrolyte solution and spaced apart from the cathode. Various anode materials are described including vitreous carbon, reticulated vitreous carbon, and woven carbon fibers.
摘要:
A method of treating a substrate, wherein the substrate comprises a layer deposited from a trivalent chromium electrolyte, is described. The method includes the steps of providing an anode and the chromium(III) plated substrate as a cathode in an electrolyte comprising (i) a trivalent chromium salt; and (ii) a complexant; and passing an electrical current between the anode and the cathode to passivate the chromium(III) plated substrate. The substrate may be first plated with a plated nickel layer so that the chromium(III) plated layer is deposited over the nickel plated layer.
摘要:
An electrolytic cell and a method of electrochemical oxidation of manganese(II) ions to manganese(III) ions in the electrolytic cell are described. The electrolytic cell comprises (1) an electrolyte solution of manganese(II) ions in a solution of at least one acid; (2) a cathode immersed in the electrolyte solution; and (3) an anode immersed in the electrolyte solution and spaced apart from the cathode. Various anode materials are described including vitreous carbon, reticulated vitreous carbon, woven carbon fibers, lead and lead alloy. Once the electrolyte is oxidized to form a metastable complex of manganese(III) ions, a platable plastic may be contacted with the metastable complex to etch the platable plastic. In addition, a pretreatment step may also be performed on the platable plastic prior to contacting the platable plastic with the metastable complex to condition the plastic surface.
摘要:
A method of adjusting and controlling the color of trivalent chromium deposits is provided. The method includes the steps of: (a) measuring the color of a trivalent chromium deposit standard; (b) adding one or more color enhancing additives to a trivalent chromium electrolyte; (c) contacting the substrate with the trivalent chromium electrolyte containing the one or more color enhancing additives to deposit trivalent chromium on the substrate; (d) measuring the color of the color-enhanced trivalent chromium deposit; (e) comparing the color of the color-enhanced chromium deposit to that of the standard; and (f) if necessary, adjusting the amount of the one or more color enhancing additives added to the trivalent chromium electrolyte if the color of the color-enhanced chromium deposit is outside of a desired optical variation from that of the standard color-enhanced chromium deposit. The color of the trivalent chromium deposit may be measured using a spectrophotometer.