摘要:
A method of measurement gap reporting and configuration is provided. In a mobile network, a UE receives a capability enquiry message from a serving base station. The UE comprises one or more radio frequency modules that support a list of frequency bands and a list of carrier aggregation (CA) band combinations. In response to the enquiry, the UE transmits capability information containing measurement parameters to the base station. In one embodiment, the measurement parameters comprise need-for-gap parameters for each frequency band and each CA band combinations associated with a list of to-be-measured frequency bands of target cells. Based on the reported measurement parameters, the eNB transmits a measurement configuration message to the UE. Finally, the UE transmits a measurement gap application message back to the base station. The measurement gap application message indicates whether the UE applies MG for each configured component carrier.
摘要:
Methods to manage multiple component carriers (CCs) efficiently in a mobile network with carrier aggregation (CA) enabled are proposed. For CC activation/deactivation, a single LCID value is used to represent both activation and deactivation command. A single command with multiple instructions is provided to activate and/or deactivate multiple CCs. In addition, unnecessary re-activation or re-inactivation of a CC is prevented, and explicit feedback for activation/deactivation is considered. For scheduling mechanism, a novel buffer status reporting (BSR) procedure is provided, where only one BSR is calculated after preparing all the transport blocks (TB) within one transmission time interval (TTI). Novel power headroom reporting (PHR) format and trigger are also provided. For DL-UL linking, various linking types are created based on whether there is carrier indicator field (CIF) in DL grant or UL grant. The various linking types are used in different applications to improve scheduling flexibility and load balancing.
摘要:
A method of multi-radio interworking to provide integrated cellular and WLAN access for a multi-radio device is provided. A serving base station in a cellular network first obtains wireless local area network (WLAN) information and then forward the WLAN information to a serving device such that the serving device is capable to connect with both the cellular network and a WLAN. The WLAN information may comprise scanning information, WLAN QoS information, WLAN layer-3 information, or additional WLAN access point information. The WLAN information is forwarded based on triggering events associated with the serving base station information, WLAN coverage information, or the serving device information. Based on the received WLAN information, when entering WLAN coverage, the serving device activates its WLAN access to forward traffic from the cellular access network to the WLAN access network. When leaving WLAN coverage, the serving device deactivates its WLAN access to save power consumption.
摘要:
A communications apparatus is provided. A first radio module provides a first wireless communications service and communicates with a first communications device in compliance with a first protocol. A second radio module provides a second wireless communications service and communicates with a second communications device in compliance with a second protocol. A Co-Located Coexistence radio manager detects activities of the first radio modules, obtains a first traffic pattern describing downlink and/or uplink traffic allocations of the first radio module from the first radio module, and generates a second traffic pattern of the second radio module according to the first traffic pattern to coordinate operations of the first and second radio modules. The second traffic pattern describes recommended downlink and/or uplink traffic allocations to a plurality of subframes for the second radio module, and each sub-frame defined by the second protocol includes Orthogonal Frequency Division Multiplexing symbols.
摘要:
A method of dynamic resource transaction in wireless OFDMA systems is proposed. In macro-femto overlay network architecture, network and traffic condition varies dynamically. Dynamic resource transaction is a powerful mechanism to achieve effective interference mitigation and flexible radio resource management to enhance resource utilization as well as to improve link performance. Dynamic resource transaction can be performed by signaling or message exchange through backhaul network or air-interface connections. The signal or message through backhaul network can be directly exchanged among multiple base stations or be routed through a centralized self-organizing network (SON) server. In one embodiment, dynamic resource transaction is used to achieve adaptive reservation region configuration, a solution to avoid interference and frequent handover for highspeed mobile stations.
摘要:
A method of reducing gray energy consumption and achieving optimal gray energy saving for carbon neutralization is proposed. In a cellular network, each cell or BS, group of cells, has renewable, green, and non-renewable, gray, on-grid power, energy sources. The renewable, green, energy is highly variable and unpredictable, while non-renewable, gray, on-grid power, is stable but is not renewable and thus has more carbon impact. Each cell or BS, group of cells, services is associated UEs when it is on. In one novel aspect, a cell or BS, group of cells, that consumes more non-renewable energy can give some or all of its served UEs to another cell or BS, group of cells, that consumes less non-renewable energy (602, 603).
摘要:
A method of data transmission over guard sub-carriers is provided in a multi-carrier OFDM system. Adjacent radio frequency (RF) carriers are used to carry radio signals transmitted through adjacent frequency channels. A plurality of guard sub-carriers between adjacent frequency channels are aligned and identified for data transmission in a pre-defined physical resource unit. The identified guard sub-carriers do not overlap with normal data sub-carriers of the radio signals transmitted through the adjacent frequency channels. At least one of the identified guard sub-carriers is reserved as NULL subcarrier. A flexible multi-carrier transceiver architecture is also provided in a multi-carrier OFDM system. Different multi-carrier and/or MIMO/SISO data transmission schemes are implemented by adaptively reconfigure same hardware modules including common MAC layer module, physical layer entities, and RF entities. Furthermore, the flexible multi-carrier transceiver architecture can be used to support data transmission over guard sub-carriers.