摘要:
Millimeter-wave (mmWave) band communication is a very promising technology for 5G small cells. In practice, such a new system will coexist with legacy or evolved microwave band systems, such as E-UTRAN LTE macro-cell cellular systems, for a long time to come. Considering the typical scenarios where a macro cell offers umbrella coverage for clusters of small cells, several user plane (U-plane) architectural choices of macro-assisted 5G mmWave systems from both UE and network's perspectives are evaluated. The proposed On-demand Reconfiguration U-Plane Architecture (ORUA) for Macro-assisted Millimeter Wave (mmWave) small cells is designed to meet 5G expectations of dense deployment of small cells and UEs and beamformed intermittent Gbps links.
摘要:
A method of providing spatial diversity for critical data delivery in a beamformed mmWave smallcell is proposed. The proposed spatial diversity scheme offers duplicate or incremental data/signal transmission and reception by using multiple different beams for the same source and destination. The proposed spatial diversity scheme can be combined with other diversity schemes in time, frequency, and code, etc. for the same purpose. In addition, the proposed spatial diversity scheme combines the physical-layer resources associated with the beams with other resources of the same or different protocol layers. By spatial signaling repetition to avoid Radio Link Failure (RLF) and Handover Failure (HOF), mobility robustness can be enhanced. Mission-critical and/or time-critical data delivery can also be achieved without relying on retransmission.
摘要:
Millimeter-wave (mmWave) band communication is a very promising technology for 5G small cells. In practice, such a new system will coexist with legacy or evolved microwave band systems, such as E-UTRAN LTE macro-cell cellular systems, for a long time to come. Considering the typical scenarios where a macro cell offers umbrella coverage for clusters of small cells, several control plane (C-plane) architectural choices of macro-assisted 5G mmWave systems from both UE and network's perspectives are evaluated. Termed macro-assisted mmWave, an effective end-to-end integration of the futuristic mmWave small cells and microwave macro cells shall promise the benefits of both yet avoid individual limitations. The proposed On-demand Reconfiguration C-Place Architecture (ORCA) for Macro-assisted Millimeter Wave (mmWave) small cells is designed to meet 5G expectations of dense deployment of small cells and UEs and beamformed intermittent Gbps links.
摘要:
Inter-cell coordination and beam-aware scanning with end-to-end UE-BS signaling enhancements for robust HO trigger in a beamforming mmWave network is proposed. From the network and the base station perspective, inter-BS control beam coordination is performed, coupled with neighbor-cell information advertisement to facilitate UE-side beam-aware scanning. Inter-BS CB coordination enables a variety of network planning, pre-determined or random, enhanced with UE-reports and dynamic re-coordination to minimize inter-cell interference. From UE perspective, by utilizing the advertised CB information, UE can learn serving cell and neighbor cell CB pattern for beam-aware scanning. Beam-aware scanning enables power saving fast scanning at the UE with beam-aware HO measurement of neighboring and target cells, which reduces HO latency and avoids unnecessary HO.
摘要:
A method of radio link monitoring (RLM) and radio link failure (RLF) handling over a small cell network is proposed. In a wireless network, a user equipment (UE) establishes a radio resource control (RRC) connection with a base station (eNB), which is UE anchor. The UE applies carrier aggregation for multiple component carriers (CCs) configured as multiple serving cells. The aggregated serving cells are served by the anchor eNB and other drift eNB(s). The UE performs RLM/RLF over PCELL and SCELL belonging to corresponding cell groups. When RLF happens in a serving cell, the UE and the eNB apply certain actions over the serving cell or all serving cells in the group. RLF procedures in anchor eNB and in drift eNB are proposed. Both UE side and network side behaviors are included.