摘要:
An implantable medical device lead having an integral biostable in-sutu grown oxide insulation and process for forming that includes a lead body extending from a proximal end to a distal end, and a plurality of conductor wires electrically coupling the proximal end and the distal end of the lead body, with one or more of the plurality of conductor wires being formed of a material having a chemically modifiable surface for producing an insulating oxide layer thereon. An insulation layer corresponding to the native oxide layer is formed about the one or more of the plurality of conductor wires.
摘要:
A bipolar cardiac vein lead and method of assembly is provided wherein the lead includes a flexible coil anode electrode such that the lead may be advanced through a tortuous pathway. The coil electrode is coupled to a conductor using a method of assembly that minimizes or eliminates rigid components, maintaining flexibility of the distal lead end. Multi-polar cardiac vein leads may include multiple flexible coil electrodes to achieve pacing and/or sensing in the left atrium and the left ventricle or at multiple left heart sites.
摘要:
A biomedical lead conductor body formed of a coiled wire conductor that is sheathed loosely within a coiled insulative sheath of biocompatible and biostable material allowing a gap of space to be present between the exterior surface of the coiled wire conductor and the adjacent interior surface of the insulative sheath. The coiled insulative sheath is loosely fitted around the coiled wire conductor in order to compensate for defects in the coiled insulative sheath by spreading any corrosion of the wire that may take place because of the defect away from the site of a defect and along the surface of the coiled wire conductor. The lead body is incorporated into unipolar, bipolar or multi-polar biomedical leads having single filar coil windings, or multi-filar coil windings that may be redundantly electrically connected. The coiled wire conductors and coiled insulative sheaths may be parallel-wound and/or coaxially wound within the outer lead body insulative sheath. The individual coiled wire conductors may be formed of single filar wire or multi-filar wire cable and formed of single composition or composite conductive metals. The proximal and distal wire ends of the coiled wire conductors that are electrically connected in common are connected to lead connector elements and operative elements, respectively.
摘要:
An implantable medical device lead having an integral biostable in-sutu grown oxide insulation and process for forming that includes a lead body extending from a proximal end to a distal end, and a plurality of conductor wires electrically coupling the proximal end and the distal end of the lead body, with one or more of the plurality of conductor wires being formed of a material having a chemically modifiable surface for producing an insulating oxide layer thereon. An insulation layer corresponding to the native oxide layer is formed about the one or more of the plurality of conductor wires.
摘要:
A biomedical lead conductor body formed of a coiled wire conductor that is sheathed loosely within a coiled insulative sheath of biocompatible and biostable material allowing a gap of space to be present between the exterior surface of the coiled wire conductor and the adjacent interior surface of the insulative sheath. The coiled insulative sheath is loosely fitted around the coiled wire conductor in order to compensate for defects in the coiled insulative sheath by spreading any corrosion of the wire that may take place because of the defect away from the site of a defect and along the surface of the coiled wire conductor. The lead body is incorporated into unipolar, bipolar or multi-polar biomedical leads having single filar coil windings, or multi-filar coil windings that may be redundantly electrically connected. The coiled wire conductors and coiled insulative sheaths may be parallel-wound and/or coaxially wound within the outer lead body insulative sheath. The individual coiled wire conductors may be formed of single filar wire or multi-filar wire cable and formed of single composition or composite conductive metals. The proximal and distal wire ends of the coiled wire conductors that are electrically connected in common are connected to lead connector elements and operative elements, respectively.