摘要:
A burner (1) that utilizes venturi action for induction of combustion air. The action of the venturi (11) draws in surrounding air present around the nozzle to supply the necessary combustion air, provide forward moment to the burning gases to distribute their heat, and control the location of the heat release. The burner (1) can thus be used to accomplish fuel gas injection directly into the combustion chamber (50) of an oxidizer, and does not require a separate gas train or suffer from the other various drawbacks typical of conventional fuel gas injection systems. A stable flame is generated, and efficient heat-up accomplished. No extra combustion air is necessary.
摘要:
Valve (50) and valve lift system (52) suitable for use in a regenerative thermal oxidizer (10), and oxidizer including the switching valve. The valve of the present invention exhibits excellent sealing characteristics and minimizes wear. In a preferred embodiment, the valve is sealed with pressurized air during its stationary modes, and unsealed during movement to reduce valve wear.
摘要:
Switching valve and a regenerative thermal oxidizer including the switching valve. The valve of the present invention exhibits excellent sealing characteristics and minimizes wear. The valve has a seal plate that defines two chambers, each chamber being a flow port that leads to one of two regenerative beds of the oxidizer. The valve also includes a switching flow distributor which provides alternate channeling of the inlet or outlet process gas to each half of the seal plate. The valve operates between two modes: a stationary mode and a valve movement mode. In the stationary mode, a tight gas seal is used to minimize or prevent process gas leakage. The gas seal also seals during valve movement.
摘要:
Regenerative oxidizer including an entrapment chamber and damper assembly, as well as a method of oxidizing volatile organic compounds in a gas using such apparatus. To improve the VOC destruction efficiency and eliminate opacity issues resulting from heat exchange matrix regeneration, untreated fluid can be diverted away from the oxidizer exhaust stack and directed into a 'holding vessel' or VOC entrapment chamber. The assembly utilizes a single damper in order to divert the exhaust flow from the oxidizer either to exhaust or to the entrapment chamber. The entrapment chamber preferably has a modular construction, which facilitates expanding or decreasing the volume of the chamber. The design facilitates installation and can be retrofitted on existing equipment. The damper diverts the flow of gas with minimal or no negative impact on the process flow.
摘要:
Switching valve utilizing a rotatable seal suitable for use in a regenerative thermal oxidizer (10), and oxidizer (10) including the switching valve (20). The valve (20) of the present invention exhibits excellent sealing characteristics and minimizes wear. The valve (20) has a seal plate (100) that defines two chambers, each chamber being a flow port (25) that leads to one of two regenerative beds of the oxidizer (10). The valve (20) also includes a switching flow distributor (50) that provides alternate channeling of the inlet or outlet process gas to each half of the seal plate. The valve operates between two modes: a stationary mode and a valve movement mode. In the stationary mode, a tight gas seal is used to minimize or prevent process gas leakage. The gas seal also seals during valve movement.
摘要:
A burner (1) that utilizes venturi action for induction of combustion air. The action of the venturi (11) draws in surrounding air present around the nozzle to supply the necessary combustion air, provide forward moment to the burning gases to distribute their heat, and control the location of the heat release. The burner (1) can thus be used to accomplish fuel gas injection directly into the combustion chamber (50) of an oxidizer, and does not require a separate gas train or suffer from the other various drawbacks typical of conventional fuel gas injection systems. A stable flame is generated, and efficient heat-up accomplished. No extra combustion air is necessary.
摘要:
Regenerative oxidizer including an entrapment chamber and damper assembly, as well as a method of oxidizing volatile organic compounds in a gas using such apparatus. To improve the VOC destruction efficiency and eliminate opacity issues resulting from heat exchange matrix regeneration, untreated fluid can be diverted away from the oxidizer exhaust stack and directed into a 'holding vessel' or VOC entrapment chamber. The assembly utilizes a single damper in order to divert the exhaust flow from the oxidizer either to exhaust or to the entrapment chamber. The entrapment chamber preferably has a modular construction, which facilitates expanding or decreasing the volume of the chamber. The design facilitates installation and can be retrofitted on existing equipment. The damper diverts the flow of gas with minimal or no negative impact on the process flow.
摘要:
Switching valve and a regenerative thermal oxidizer including the switching valve. The valve of the present invention exhibits excellent sealing characteristics and minimizes wear. The valve has a seal plate that defines two chambers, each chamber being a flow port that leads to one of two regenerative beds of the oxidizer. The valve also includes a switching flow distributor which provides alternate channeling of the inlet or outlet process gas to each half of the seal plate. The valve operates between two modes: a stationary mode and a valve movement mode. In the stationary mode, a tight gas seal is used to minimize or prevent process gas leakage. The gas seal also seals during valve movement.
摘要:
Valve with heated sealing gas suitable for use in a regenerative thermal oxidizer, and oxidizer including the switching valve. The valve of the present invention exhibits excellent sealing characteristics and minimizes wear. In a preferred embodiment, the valve utilizes hot gas from the regenerative process to heat gas for sealing the valve, and sealing air flows through a heat exchanger that is positioned to be in contact with hot exhaust gas from the regenerative process.