摘要:
Apparatus and method are provided for small cell energy saving. In one novel aspect, switch-off-request is broadcasted by the small cell detecting the low-load condition. The small cells upon receiving the switch-off-request message enter the frozen state, which prevents the small cells from switching off. In another novel aspect, the small cell in the low-load condition request measurement reports from the UEs. The UEs replies with the measurement-reports message, which includes the detected neighboring IDs and the UE's traffic load. The low-load small cell includes the information derived from the measurement-reports in the switch-off-request message. In another novel aspect, the small cell broadcasts the switch-on-request message. Upon receiving switch-on-acknowledge messages from switched-off neighboring small cells, the small cell selects one or more target cells to send the cell-activation-request. The switched-off small cells, upon receiving the request to switch-on, uses a cost function to determine whether to switch on.
摘要:
Methods and apparatus are provided contention based uplink data transmission. In one novel aspect, the contention-based uplink data channel is used to transmit the data directly to the network. In one embodiment, the UE selects an UL data channel from a set of preconfigured uplink contention based data channels and sends the UL data transmission on the selected UL data channel. In one embodiment, the contention based UL data has a narrow bandwidth with a long CP such that the TA is not needed from the base station. In another embodiment, a small signaling payload is included in the CB UL data transmission if the size of the data contents cannot be fit in the UL data channel. In one embodiment, the signaling payload is the BSR. The UE, subsequently, receives an UL grant and sends the remaining data contents using the allocated data channel in the UL grant.
摘要:
Methods for UE measurement enhancement in an adaptive TDD configuration network are proposed. In a first solution, the network provides an adaptive TDD indicator to the UE. In a second solution, the network provides an instantaneous TDD configuration to the UE. In a third solution, multiple TDD configurations are grouped as one TDD group, and the network adapts TDD configurations within the same TDD group. In a fourth solution, the network broadcasts a TDD reference configuration in SIB1, and adapts to another TDD configuration with DL super set constraint, i.e., the DL subframes of the other TDD configuration form a super set of the DL subframes of the broadcasted TDD reference configuration.
摘要:
Methods for UE measurement enhancement in an adaptive TDD configuration network are proposed. In a first solution, the network provides an adaptive TDD indicator to the UE. In a second solution, the network provides an instantaneous TDD configuration to the UE. In a third solution, multiple TDD configurations are grouped as one TDD group, and the network adapts TDD configurations within the same TDD group. In a fourth solution, the network broadcasts a TDD reference configuration in SIB1, and adapts to another TDD configuration with DL super set constraint, i.e., the DL subframes of the other TDD configuration form a super set of the DL subframes of the broadcasted TDD reference configuration.
摘要:
A method of measurement gap reporting and configuration is provided. In a mobile network, a UE receives a capability enquiry message from a serving base station. The UE comprises one or more radio frequency modules that support a list of frequency bands and a list of carrier aggregation (CA) band combinations. In response to the enquiry, the UE transmits capability information containing measurement parameters to the base station. In one embodiment, the measurement parameters comprise need-for-gap parameters for each frequency band and each CA band combinations associated with a list of to-be-measured frequency bands of target cells. Based on the reported measurement parameters, the eNB transmits a measurement configuration message to the UE. Finally, the UE transmits a measurement gap application message back to the base station. The measurement gap application message indicates whether the UE applies MG for each configured component carrier.
摘要:
A method of failure event report correlation is proposed. A UE detects a failure event in a first cell served by a first base station, and the UE is assigned with a previous C-RNTI. The failure event may include a radio link failure, a handover failure, or a RACH failure. The UE then performs an RRC establishment procedure with a second base, and the UE is assigned with a new C-RNTI. After the RRC establishment, the UE transmits a failure event report along with the correlation information to the second base station. The second base station then forwards the failure event report and the previous C-RNTI to the first base station. The first base station can correlate the failure event report with the previous failure event based on the previous C-RNTI to avoid double bookkeeping and improve MRO decision for SON.
摘要:
A method of UE transmit power adjustment based on TPC command in adaptive TDD systems is proposed. A UE obtains TDD configuration information from a base station in an adaptive TDD system. The UE also obtains an HARQ reference configuration from the base station. The UE then receives a transmit power control (TPC) command in one or more previous subframes. The UE performs power adjustment in a subsequent subframe based on the TPC command. The location of the previous subframes is determined based on the HARQ reference configuration. In one embodiment, an UL HARQ reference configuration is applied for PUSCH power control. In another embodiment, a DL HARQ reference configuration is applied for PUCCH power control.
摘要:
A method of reporting UE measurement state information in RLF report is provided. A UE performs radio measurements of a serving cell and neighbor cells in a mobile communication network. The UE evaluates a measurement reporting criteria and attempts to access the network to deliver a measurement report if the criteria is met. The UE then detects a radio link failure or a handover failure event and reconnects to the network by performing RRC reestablishment or RRC establishment. Finally, the UE transmits a failure event report to the network. The failure event report comprises UE measurement state information corresponds to the failure event. The UE measurement state information helps the network to determine whether to apply corrective actions to mitigate the failure.
摘要:
A method of failure event report correlation is proposed. A UE detects a failure event in a first cell served by a first base station, and the UE is assigned with a previous C-RNTI. The failure event may include a radio link failure, a handover failure, or a RACH failure. The UE then performs an RRC establishment procedure with a second base, and the UE is assigned with a new C-RNTI. After the RRC establishment, the UE transmits a failure event report along with the correlation information to the second base station. The second base station then forwards the failure event report and the previous C-RNTI to the first base station. The first base station can correlate the failure event report with the previous failure event based on the previous C-RNTI to avoid double bookkeeping and improve MRO decision for SON.