摘要:
The gain provided by an erbium amplifier (3) is stabilised by spectrally selective optical feedback (4, 5) to make the amplifier lase. The resulting laser emission is extracted from the amplifier output using a Mach Zehnder (8, 9, 10, 11) with matched Bragg reflectors (12, 13) in its two interference arms. The extracted light may be used for supervisory purposes. Part of the laser cavity defining feedback may be provided by the Mach Zehnder by arranging one of its Bragg reflectors to be displaced with respect to the other.
摘要:
A practical fibre Raman amplifier for soliton systems which employs conventional transmission fibre (4) and a pulsed pump source (3). The pump source only requires a relatively low mean power level but must be capable of providing sufficiently high peak output power pulses at intervals corresponding to the intervals between solitons whereby to amplify the latter. A conventional mode-locked laser diode source can achieve this at the requisite wavelength. The use of such a pulsed pump source is possible since the solitons have to be spaced at intervals approximately 8 to 10 times their pulse width in order to avoid interaction problems. Conventionally, Raman amplification requires high mean power continuous wave pump sources and suitable laser diode sources are not available at the requisite wavelengths.
摘要:
A practical fibre Raman amplifier for soliton systems which employs conventional transmission fibre (4) and a pulsed pump source (3). The pump source only requires a relatively low mean power level but must be capable of providing sufficiently high peak output power pulses at intervals corresponding to the intervals between solitons whereby to amplify the latter. A conventional mode-locked laser diode source can achieve this at the requisite wavelength. The use of such a pulsed pump source is possible since the solitons have to be spaced at intervals approximately 8 to 10 times their pulse width in order to avoid interaction problems. Conventionally, Raman amplification requires high mean power continuous wave pump sources and suitable laser diode sources are not available at the requisite wavelengths.
摘要:
Instead of a single beam (10), two coherent beams (10' and 10") of light are used to illuminate a phase grating in spatially separated zones for writing a Bragg reflection grating in an underlying optical (fibre) waveguide (12). Close proximity between phase grating and waveguide is not required. This facilitates the use of masking so that only two different diffracted orders (10'c and 10"a) contribute to the fringe pattern that generates the Bragg grating, thereby improving fringe contrast and reducing the deleterious spectral effects upon the reflectivity of the Bragg reflector occasioned by the presence of stitch errors in the phase grating.
摘要:
In order to achieve increased spacing between amplifiers in soliton transmission systems, it is proposed to use distributed amplifiers, whereby the fibre is a continuous amplifier, rather than or in addition to the conventional lumped amplifiers. This is achieved by using rare earth, for example, erbium doped fibre as the or part of the transmission fibre (4; 4, 7) for the solitons and arranging that the erbium doped fibre appears substantially lossless to input soliton pulses. The latter can be achieved by varying the erbium concentration along the fibre length and providing appropriate optical pumping (5) for the erbium doped fibre. Alternatively, the output of the pump (5) for the fibre can itself be pumped (5a) whereby to replenish the pump power lost to the erbium doped fibre.
摘要:
In order to achieve increased spacing between amplifiers in soliton transmission systems, it is proposed to use distributed amplifiers, whereby the fibre is a continuous amplifier, rather than or in addition to the conventional lumped amplifiers. This is achieved by using rare earth, for example, erbium doped fibre as the or part of the transmission fibre (4; 4, 7) for the solitons and arranging that the erbium doped fibre appears substantially lossless to input soliton pulses. The latter can be achieved by varying the erbium concentration along the fibre length and providing appropriate optical pumping (5) for the erbium doped fibre. Alternatively, the output of the pump (5) for the fibre can itself be pumped (5a) whereby to replenish the pump power lost to the erbium doped fibre.
摘要:
The gain provided by an erbium amplifier (3) is stabilised by spectrally selective optical feedback (4, 5) to make the amplifier lase. The resulting laser emission is extracted from the amplifier output using a Mach Zehnder (8, 9, 10, 11) with matched Bragg reflectors (12, 13) in its two interference arms. The extracted light may be used for supervisory purposes. Part of the laser cavity defining feedback may be provided by the Mach Zehnder by arranging one of its Bragg reflectors to be displaced with respect to the other.
摘要:
An optical repeater is comprised by an amplifying optical fibre (5) and directional coupler means (3). An input pulse (1) is reflected, by a respective grating (7) written in the optical fibre, in dependence on the spectral content of the pulse (1). The output pulse (8) is thus reshaped (amplified) and narrowed spectrally. The gratings have different spacings, at least in use of the repeater, so that output pulses with predetermined characteristics can be achieved.