摘要:
The present application relates to a method of monitoring the membrane permeabilization of liposome and the incidental release of a compound of interest.
摘要:
The present invention relates to the field of human health and more particularly concerns nanoparticles for use as a therapeutic vaccine in the context of radiotherapy in a subject suffering of a cancer, in particular of a metastatic cancer or of a liquid cancer.
摘要:
The present invention relates to compositions and methods for use in medical diagnostic and patient monitoring, typically in the context of therapy, in particular in the context of oncology to optimize tumor bed local irradiation. It more particularly relates to a biocompatible gel comprising nanoparticle and/or nanoparticles aggregates, wherein i) the density of each nanoparticle and of each nanoparticle aggregate is of at least 7 g/cm3, the nanoparticle or nanoparticles of the aggregate comprising an inorganic material comprising at least one metal element having an atomic number Z of at least 25, more preferably of at least 40, each of said nanoparticle and of said nanoparticle aggregate being covered with a biocompatible coating; ii) the nanoparticles and/or nanoparticle aggregate concentration is of at least about 1% (w/w); and iii) the apparent viscosity at 2 s−1 of the gel comprising nanoparticles and/or nanoparticle aggregates, is between about 0.1 Pa·s and about 1000 Pa·s when measured between 20° C. and 37° C.
摘要:
The invention pertains to thermosensitive liposomes encapsulating nanoparticles. In certain embodiments, the thermosensitive liposomes of the invention disrupt when heated at gel-to-liquid crystalline phase transition temperature (Tm) or above Tm, wherein the liposome comprises a thermosensitive lipidic membrane encapsulating nanoparticles. The nanoparticles used in the invention comprise an inorganic core the largest dimension of which is less than about 100 nm that is fully coated with an agent responsible for the presence of an electrostatic charge below −20 mV or above +20 mV at the surface of the nanoparticle, the electrostatic charge being determined by zeta potential measurements in an aqueous medium between pH 6 and 8, for a concentration of nanoparticles in suspension in the aqueous medium varying between 0.2 and 8 g/L. The invention also relates to pharmaceutical and diagnostic compositions comprising the thermosensitive liposomes as well as to their uses.
摘要:
The present invention relates to a pharmaceutical composition comprising the combination of (i) at least one biocompatible nanoparticle and (ii) at least one carrier comprising at least one pharmaceutical compound, to be administered to a subject in need of such a pharmaceutical compound, wherein the combination of the at least one biocompatible nanoparticle and of the at least one carrier comprising the pharmaceutical compound(s) potentiates the compound(s) of interest efficiency. The longest dimension of the biocompatible nanoparticle is typically between about 4 and about 500 nm and its absolute surface charge value is of at least 10 mV (|10 mV|). The carrier is in addition devoid of any surface sterically stabilizing agent. The invention also relates to such a composition for use for administering the pharmaceutical compound(s) in a subject in need thereof, wherein the at least one biocompatible nanoparticle and the at least one carrier comprising the at least one pharmaceutical compound are to be administered separately in a subject in need of said pharmaceutical compound, typically between more than 5 minutes and about 72 hours one from each other.