摘要:
There is provided a quantitative evaluation device or the like of atomic vacancy existing in a silicon wafer in which the atomic vacancy concentration in the silicon wafer can be quantitatively evaluated by forming a rationalized thin-film transducer on a surface of a silicon sample without conducting an acceleration treatment for enhancing the concentration. This is characterized by comprising a magnetic force generating means 2 for applying an external magnetic field to a silicon sample 5 cut out from a given site of a silicon wafer, a temperature controlling means 3 capable of cooling the silicon sample 5 to a temperature region of not higher than 50 K, a ultrasonic oscillating-detecting means 4 for oscillating ultrasonic pulse to the surface of the silicon sample 5 and propagating the oscillated ultrasonic pulse into the silicon sample 5 and detecting a change of sound velocity in the propagated ultrasonic pulse, wherein a thin-film transducer 8 having properties capable of following to an expansion of the silicon sample 5 at the above temperature region and substantially aligning C-axis in a given direction is directly formed on the surface of the silicon sample 5.
摘要:
There is provided a quantitative evaluation device or the like of atomic vacancy existing in a silicon wafer in which the atomic vacancy concentration in the silicon wafer can be quantitatively evaluated by forming a rationalized thin-film transducer on a surface of a silicon sample without conducting an acceleration treatment for enhancing the concentration. This is characterized by comprising a magnetic force generating means 2 for applying an external magnetic field to a silicon sample 5 cut out from a given site of a silicon wafer, a temperature controlling means 3 capable of cooling the silicon sample 5 to a temperature region of not higher than 50 K, a ultrasonic oscillating-detecting means 4 for oscillating ultrasonic pulse to the surface of the silicon sample 5 and propagating the oscillated ultrasonic pulse into the silicon sample 5 and detecting a change of sound velocity in the propagated ultrasonic pulse, wherein a thin-film transducer 8 having properties capable of following to an expansion of the silicon sample 5 at the above temperature region and substantially aligning C-axis in a given direction is directly formed on the surface of the silicon sample 5.