摘要:
Devices are disclosed for holding and moving a planar body such as a reticle as used, for example, in microlithography. An exemplary device includes a stage and a body chuck. The stage has a movable support surface. A proximal region of a first membrane is mounted to the support surface. A distal region of the first membrane extends from the support surface and is coupled to the chuck such that the first membrane at least partially supports the chuck. The chuck includes a surface from which multiple pins extend. The surface is situated at the distal region. The pins are arrayed to contact and support a respective region of the body. The pin arrangement is configured such that, during movements of the chuck imparted by the support surface, body slippage relative to the pins due to forces caused by the movement is substantially uniform at each pin.
摘要:
An immersion lithography system that compensating for any displacement of the optical caused by the immersion fluid. The system includes an optical assembly (14) to project an image defined by the reticle (12) onto the wafer (20). The optical assembly includes a final optical element (16) spaced from the wafer by a gap (24). An immersion element (22) is provided to supply an immersion fluid into the gap and to recover any immersion fluid that escapes the gap. A fluid compensation system is provided for the force on the final optical element of the optical assembly caused by pressure variations of the immersion fluid. The resulting force created by the varying pressure may cause final optical element to become displaced. The fluid compensation system is configured to provide a substantially equal, but opposite force on the optical assembly, to prevent the displacement of the final optical element.
摘要:
An immersion lithography apparatus (100) has a reticle stage (RST) arranged to retain a reticle (R), a working stage (9-11) arranged to retain a workpiece (W), and an optical system including an illumination source and an optical element (4) opposite the workpiece (W) for having an image pattern of the reticle (R) projected by radiation from the illumination source. A gap is defined between the optical element (4) and the workpiece (W), and a fluid-supplying device (5) serves to supply an immersion liquid (7) into this gap such that the supplied immersion liquid (7) contacts both the optical element (4) and the workpiece (W) during an immersion lithography process. A cleaning device (30) is incorporated for removing absorbed liquid from the optical element (4) during a cleanup process. The cleaning device (30) may make use of a cleaning liquid having affinity to the absorbed liquid, heat, a vacuum condition, ultrasonic vibrations or cavitating bubbles for the removal of the absorbed liquid. The cleaning liquid may be supplied through the same fluid-applying device provided with a switching device such as a valve.
摘要:
An environmental system (26) for controlling an environment in a gap (246) between an optical assembly (16) and a device (30) includes a fluid barrier (254), an immersion fluid system (252), and a transport region (256). The fluid barrier (254) is positioned near the device (30) and maintains the transport region (256) near the gap (246). The immersion fluid system (252) delivers an immersion fluid (248) that fills the gap (246). The transport region (256) transports at least a portion of the immersion fluid (248) that is near the fluid barrier (254) and the device (30) away from the device (30). The immersion fluid system (252) can include a fluid removal system (282) that is in fluid communication with the transport region (256). The transport region (256) can be made of a porous material.
摘要:
An immersion lithography system that compensating for any displacement of the optical caused by the immersion fluid. The system includes an optical assembly (14) to project an image defined by the reticle (12) onto the wafer (20). The optical assembly includes a final optical element (16) spaced from the wafer by a gap (24). An immersion element (22) is provided to supply an immersion fluid into the gap and to recover any immersion fluid that escapes the gap. A fluid compensation system is provided for the force on the final optical element of the optical assembly caused by pressure variations of the immersion fluid. The resulting force created by the varying pressure may cause final optical element to become displaced. The fluid compensation system is configured to provide a substantially equal, but opposite force on the optical assembly, to prevent the displacement of the final optical element.
摘要:
An immersion lithography apparatus (100) has a reticle stage (RST) arranged to retain a reticle (R), a working stage (9-11) arranged to retain a workpiece (W), and an optical system including an illumination source and an optical element (4) opposite the workpiece (W) for having an image pattern of the reticle (R) projected by radiation from the illumination source. A gap is defined between the optical element (4) and the workpiece (W), and a fluid-supplying device (5) serves to supply an immersion liquid (7) into this gap such that the supplied immersion liquid (7) contacts both the optical element (4) and the workpiece (W) during an immersion lithography process. A cleaning device (30) is incorporated for removing absorbed liquid from the optical element (4) during a cleanup process. The cleaning device (30) may make use of a cleaning liquid having affinity to the absorbed liquid, heat, a vacuum condition, ultrasonic vibrations or cavitating bubbles for the removal of the absorbed liquid. The cleaning liquid may be supplied through the same fluid-applying device provided with a switching device such as a valve.
摘要:
An environmental system (26) for controlling an environment in a gap (246) between an optical assembly (16) and a device (30) includes a fluid barrier (254), an immersion fluid system (252), and a transport region (256). The fluid barrier (254) is positioned near the device (30) and maintains the transport region (256) near the gap (246). The immersion fluid system (252) delivers an immersion fluid (248) that fills the gap (246). The transport region (256) transports at least a portion of the immersion fluid (248) that is near the fluid barrier (254) and the device (30) away from the device (30). The immersion fluid system (252) can include a fluid removal system (282) that is in fluid communication with the transport region (256). The transport region (256) can be made of a porous material.