摘要:
An apparatus for performing automated in-situ lift-out of a sample (150) from a specimen (125) includes a computer (100) having a memory with computer-readable instructions, a stage (120) for a specimen (125) and a nano-manipulator (130). The stage (120) and the nano-manipulator (130) are controlled by motion controllers (110) connected to the computer (100). The nano-manipulator (130) has a probe tip (140) for attachment to samples (150) excised from the specimen (125). The computer-readable instructions include instructions to cause the stage motion controllers (110) and the nano-manipulator motion controllers (110), as well as an ion-beam source (170), to automatically perform in-situ lift-out of a sample (150) from the specimen (125).
摘要:
We disclose an apparatus and method for detecting probe-tip (120) contact with a surface, generally inside a focused ion-beam instrument, where the probe tip (120) is attached to a capsule (130), and the capsule (130) is movably secured in a probe shaft (140). There is a fiber-optic cable (150) having a first end and a second end; a beam splitter (115) having first and second output ports; and a light source (100) connected to the beam splitter (115). The first output port of the beam splitter (115) is connected to the first end of the fiber-optic cable (150), and the second output port of the beam splitter (115) is connected to a photodiode (110). The second end of the fiber-optic cable (150) has a mirror (155) for reflecting incident light at approximately a ninety-degree angle to the axis of the optical path in the fiber-optic cable (150) and onto the capsule (130), so that the intensity of the light reflected back from the capsule (130) through the fiber-optic cable (150) is proportional to the deflection of the capsule (130) as the probe tip (120) makes contact with the surface.
摘要:
We disclose a gripper and associated apparatus and methods for delivering nano-manipulator probe tips inside a vacuum chamber. The gripper includes a tube; a compression cylinder inside of and coaxial with the tube; and at least one elastic ring adjacent to the compression cylinder. There is a vacuum seal coaxial with the compression cylinder for receiving and sealing against a probe tip. An actuator is connected to the compression cylinder for compressing the elastic ring and causing it to grip the probe tip. Thus the probe tip can be gripped, transferred to a different location in the vacuum chamber, and released there. Samples attached to the probe tips will be transferred to a TEM sample holder, shown in several embodiments, that includes a bar having opposed ends; an arm attached to each opposed end of the bar; one or more slots for receiving a probe tip; and, each slot having an inner part and an outer part, where the inner part is smaller than the outer part. The TEM sample holders just described are inserted into a carrier cassette. A cassette for transferring one or more TEM sample holders comprises a platform; at least one bar extending upwardly from the platform; the bar having a groove for receiving and holding a TEM sample holder. A rotatable magazine holds one or more probe tips and selectively releases the tips. The magazine includes a cartridge having a plurality of longitudinal openings for receiving probe tips and dispensing probe tips.