Abstract:
Disclosed is a coating formed from a composition containing a film-forming resin and a plurality of particles dispersed in the resin. The average particle size of the particles is 0.1 to 50 microns, and the particles have a hardness sufficient to impart greater mar and/or scratch resistance to the coating as compared to a coating where no particles are present. Also, the difference between the refractive ranges from 1 to 1.5. A method for preparing a powder coating including the particles also is provided.
Abstract:
Coating compositions having improved mar and scratch resistance are disclosed. The coatings generally comprise particles having a hardness sufficient to provide the desired level of scratch and/or mar resistance. The improved resistance is achieved without affecting the appearance or mechanical performance of the coatings. Methods for using the coatings, and the substrates coated therewith, are also disclosed.
Abstract:
Coating compositions having improved mar and scratch resistance are disclosed. The coatings generally comprise particles having a hardness sufficient to provide the desired level of scratch and/or mar resistance. The improved resistance is achieved without affecting the appearance or mechanical performance of the coatings. Methods for using the coatings, and the substrates coated therewith, are also disclosed.
Abstract:
A thermosetting composition that includes a co-reactable solid, particulate mixture of a film forming material having functional groups and a crosslinking agent having at least two functional groups that are reactive with the functional groups in the film forming material. The crosslinking agent includes a copolymer having at least 30 mol % of alternating structural units of a residue from a donor monomer and a residue from one or more acrylic acceptor monomers. The thermosetting composition may coat a substrate by coalescing the composition to form a continuous film and curing the composition. The thermosetting composition may be included as part of a multi-component composite coating composition that includes an optional primer coat, a base coat deposited from a pigmented film-forming composition, and a transparent top coat applied over the base coat, where either the base coat, the transparent top coat, or both, are deposited from the thermosetting composition.
Abstract:
A curable powder film-forming composition is provided, comprising (i) 5 to 95 percent by weight based on the total weight of the film-forming composition of a crosslinking agent; (ii) 5 to 95 percent by weight based on the total weight of the film-forming composition of a polymer containing a plurality of functional groups reactive with the crosslinking agent; and (iii) particles having a mean particle size less than 100 nm. The particles are substantially free of functional groups on the particle surface, and are present in an amount at least sufficient to improve the flow and leveling of the composition when applied to a substrate and cured, as measured by longwave scanning, compared to a similar cured coating without the particles. A multi-component composite coating composition is also provided, comprising a pigmented basecoat and a clear coat. The basecoat and/or clearcoat may be derived from the curable film-forming composition described above. Also provided are coated substrates in which the curable coating compositions or the multi-component composite coating compositions described above are applied to a substrate and cured to form a cured coating.
Abstract:
A thermosetting composition that includes a co-reactable solid, particulate mixture of a film forming material having functional groups and a crosslinking agent having at least two functional groups that are reactive with the functional groups in the film forming material. The crosslinking agent includes a copolymer having at least 30 mol % of alternating structural units of a residue from a donor monomer and a residue from one or more acrylic acceptor monomers. The thermosetting composition may coat a substrate by coalescing the composition to form a continuous film and curing the composition. The thermosetting composition may be included as part of a multi-component composite coating composition that includes an optional primer coat, a base coat deposited from a pigmented film-forming composition, and a transparent top coat applied over the base coat, where either the base coat, the transparent top coat, or both, are deposited from the thermosetting composition.