Abstract:
A display apparatus includes a backlight and an aperture layer that is positioned in front of the backlight and defines a plurality of apertures. The display apparatus also includes a microelectromechanical system (MEMS) light modulator configured to modulate light emitted by the backlight passing through the apertures to form an image on the display apparatus. The MEMS light modulator includes a shutter (1202) that has a light blocking portion having an aperture layer-facing surface and a front-facing surface and at least one depression (1207) formed in the light blocking portion. The width of the at least one depression accounts for at least 50% but less than 100% of a distance separating two edges of the shutter. In other embodiments the shutter perimeter surface is angled. Light leakage is mitigated.
Abstract:
This disclosure provides systems, methods and apparatus for displaying images. One such apparatus includes a substrate, an elevated aperture layer (EAL) defining a plurality of apertures formed therethrough, a plurality of anchors for supporting the EAL over the substrate and a plurality of display elements positioned between the substrate and the EAL. Each of the display elements may correspond to at least one respective aperture of the plurality of apertures defined by the EAL. Each display element also includes a movable portion supported over the substrate by a corresponding anchor supporting the EAL over the substrate. In some implementations, one or more light dispersion elements may be disposed in optical paths passing through the apertures defined by the EAL.
Abstract:
Systems, apparatuses and methods are provided for increasing the aperture ratio of a display by increasing the total travel distance of respective light modulating bodies in a display while maintaining fast switching speeds. Increasing the total travel distance allows for a larger aperture ratio in a display, which provides greater power savings and increased display brightness. The total travel distance of a light modulating body includes the distance the body travels from an open position to a closed position, and vice-versa. In one example, the travel distance of a light modulating body (e.g., any of the light modulators as described above) is asymmetric: from a neutral position, the body travels a greater distance in a first direction than in a second direction.