摘要:
The present invention relates to semiconducting compounds, materials prepared from such compounds, methods of preparing such compounds and semiconductor materials, as well as various compositions, composites, and devices that incorporate the compounds and semiconductor materials. The semiconducting compounds can have higher electron-transport efficiency and higher solubility in common solvents compared to related representative compounds.
摘要:
Disclosed are new semiconductor materials prepared from rylene-(π-acceptor) copolymers. Such copolymers can exhibit high n-type carrier mobility and/or good current modulation characteristics. In addition, the polymers of the present teachings can possess certain processing advantages such as solution-processability and/or good stability at ambient conditions.
摘要:
Disclosed are certain polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The disclosed compounds can provide improved device performance, for example, as measured by power conversion efficiency, fill factor, open circuit voltage, field-effect mobility, on/off current ratios, and/or air stability when used in photovoltaic cells or transistors. The disclosed compounds can have good solubility in common solvents enabling device fabrication via solution processes.
摘要:
Disclosed are semiconducting compounds having one or more pyrrolo[3,2- b]pyrrole-2,5(lH,4H)-dione 3,6-diyl units. Such compounds can be monomeric, oligomeric, or polymeric, and can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability.
摘要:
Disclosed are certain polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The disclosed compounds can provide improved device performance, for example, as measured by power conversion efficiency, fill factor, open circuit voltage, field-effect mobility, on/off current ratios, and/or air stability when used in photovoltaic cells or transistors. The disclosed compounds can have good solubility in common solvents enabling device fabrication via solution processes.