摘要:
A dual frequency synthesizer architecture for a wireless device operating in a time division duplex (TDD) mode is disclosed. In an exemplary design, the wireless device includes first and second frequency synthesizers. The first frequency synthesizer generates a first oscillator signal used to generate a first/receive local oscillator (LO) signal at an LO frequency for the receiver. The second frequency synthesizer generates a second oscillator signal used to generate a second/transmit LO signal at the same LO frequency for the transmitter. The two frequency synthesizers generate their oscillator signals to obtain receive and transmit LO signals at the same LO frequency when the wireless device operates in the TDD mode.
摘要:
A device includes a reconfigurable receiver front end having variable gain and variable bandwidth configured to tune to a plurality of communication channels in a communication band, the reconfigurable receiver front end responsive to a signal power level.
摘要:
An apparatus is disclosed for range-based transmission parameter adjustment. In an example aspect, the apparatus includes a first antenna, a second antenna, and a wireless transceiver. The wireless transceiver is coupled to the first antenna and the second antenna. The wireless transceiver is configured to transmit a proximity detection signal via the first antenna. The wireless transceiver is also configured to receive a reflected proximity detection signal via the second antenna. The reflected proximity detection signal including a portion of the proximity detection signal that is reflected by an object. The wireless transceiver is additionally configured to adjust a transmission parameter based on the reflected proximity detection signal. The transmission parameter varies according to a range to the object. The wireless transceiver is further configured to transmit an uplink signal using the transmission parameter.
摘要:
Techniques for detecting jammers in a received signal are described. A jammer detector includes a jammer filter for attenuating transmit signals leaked into the receive path, a pulse generator for converting the interference signals into discrete-level pulses, and a pulse processor for determining the presence of jammers in the discrete-level pulses. In an exemplary embodiment, the pulse processor is configured to further discriminate among close-in jammers that are close to the desired receive frequency, far-away jammers, and jammers arising from the transmit signals leaked into the receive path. In another exemplary embodiment, hysteresis is provided in the pulse generator to enable the generation of reliable pulses. Further aspects include configuring the jammer detector for operation in a plurality of frequency bands and/or according to a plurality of communications standards.