摘要:
A receiver includes a low noise amplifier (LNA) and multiple pairs of mixers. The LNA receives and amplifies an LNA input signal and provides at least one LNA output signal. Each pair of mixers downconverts one of the at least one LNA output signal when enabled. Each pair of mixers may be selectively enabled or disabled, e.g., based on a mode selected from among multiple modes. In one design, the LNA includes multiple load sections coupled in parallel. Each load section may be selectively enabled or disabled, e.g., based on the selected mode. In one design, first and second pairs of mixers and first and second load sections may be enabled for a high linearity mode. The first pair of mixers and the first load section may be enabled and the second pair of mixers and the second load section may be disabled for a low linearity mode.
摘要:
A communication channel has a highly linear switched current mixer that incorporates passive filtering (e.g., low pass, notch) for improved transmitting (Tx) and receiving (Rx) with adding external filtering components. A high IIP2 (input referenced second order intercept point) of the receiver at the Tx offset is essential to avoid corrupting the system's sensitivity performance, and a high triple beat (TB) is required to avoid sensitivity degradation due to transmitter leakage. Thanks to the embedded filtering in the mixer and the active post-distortion (APD) method in a low noise amplifier (LNA), the required high linearity is achieved with low noise figure and power consumption, overcoming transmitter power leakage without the use of a SAW (surface acoustic wave) filter.
摘要:
Techniques for detecting jammers in a received signal are described. A jammer detector includes a jammer filter for attenuating transmit signals leaked into the receive path, a pulse generator for converting the interference signals into discrete-level pulses, and a pulse processor for determining the presence of jammers in the discrete-level pulses. In an exemplary embodiment, the pulse processor is configured to further discriminate among close-in jammers that are close to the desired receive frequency, far-away jammers, and jammers arising from the transmit signals leaked into the receive path. In another exemplary embodiment, hysteresis is provided in the pulse generator to enable the generation of reliable pulses. Further aspects include configuring the jammer detector for operation in a plurality of frequency bands and/or according to a plurality of communications standards.
摘要:
Techniques for performing transmit (TX) leakage cancellation are described. A receiver includes a low noise amplifier (LNA) and a TX leakage canceller. The LNA amplifies a receiver input signal and provides an amplified signal. The TX leakage canceller includes a downconverter, a notch filter, and an upconverter. The downconverter downconverts a canceller input signal (e.g., obtained from the LNA output) with a first LO signal at a transmit frequency and provides a downconverted signal. The notch filter filters the downconverted signal to pass an undesired signal (e.g., a TX leakage signal) and attenuate a jammer and a desired signal in the canceller input signal. The upconverter upconverts the filtered signal with a second LO signal at the transmit frequency and provides a feedback signal. The feedback signal is subtracted at the input or output of the LNA to cancel the undesired signal.
摘要:
A receiver includes a low noise amplifier (LNA) and multiple pairs of mixers. The LNA receives and amplifies an LNA input signal and provides at least one LNA output signal. Each pair of mixers downconverts one of the at least one LNA output signal when enabled. Each pair of mixers may be selectively enabled or disabled, e.g., based on a mode selected from among multiple modes. In one design, the LNA includes multiple load sections coupled in parallel. Each load section may be selectively enabled or disabled, e.g., based on the selected mode. In one design, first and second pairs of mixers and first and second load sections may be enabled for a high linearity mode. The first pair of mixers and the first load section may be enabled and the second pair of mixers and the second load section may be disabled for a low linearity mode.
摘要:
An integrated circuit for achieving power reduction in a transceiver may include a jammer detector that determines an interference level corresponding to a received signal, and a transmit power detector that determines a required transmit power level for a transmitted signal. The integrated circuit may also include at least one of the following: a process monitor that determines process corners of components within the receiver and/or the transmitter, and a temperature monitor that determines a temperature of the receiver and/or the transmitter. The integrated circuit may also include a state machine. The state machine may transition the receiver from a high linearity mode to a low linearity mode if a set of operating conditions is satisfied. Similarly, the state machine may transition the transmitter from a high power mode to a low power mode if a set of operating conditions is satisfied.
摘要:
A receiver includes a jammer detector configured to detect the presence or the absence of jamming in a communication signal within a gain state. The receiver further includes an amplifier configured to amplify the communication signal in a high linearity receiving mode or a low linearity receiving mode, wherein the high linearity receiving mode corresponds with a lower gain for the gain state in the amplifier relative to that of the low linearity receiving mode. In addition, the receiver includes a processing unit coupled to the jammer detector, the processing unit being configured to control the amplifier to amplify the communication signal in either the high linearity receiving mode or the low linearity receiving mode, based on the output of the jammer detector detecting the presence or the absence of jamming in the communication signal. A method is also provided for processing a communication signal in a receiver.
摘要:
Techniques for attenuating undesired signal components from a differential duplexer are described. The duplexer provides a differential received signal at RX+ and RX- ports. This differential received signal includes an undesired common mode signal, which may come from a transmit signal. The common mode signal is attenuated with a common mode trap in an impedance matching network coupled to the RX+ and RX- ports. The matching network includes a first passive circuit coupled between the RX+ port and a first node, a second passive circuit coupled between the RX- port and a second node, and the common mode trap coupled between the first and second nodes. In one design, the common mode trap includes a first inductor coupled between the first node and a common node, a second inductor coupled between the second node and the common node, and a capacitor coupled between the common node and circuit ground.