摘要:
Various embodiments of a display device described herein include an optical propagation region (97), at least one optical loss structure (93), an optical isolation layer (95), and a plurality of display elements (91). The propagation region includes a light guide in which light is guided via total internal reflection and turning features configured to redirect the light out of the propagation region. The loss structure would disrupt the total internal reflection of at least some of the light guided within the propagation region if disposed directly adjacent thereto. The optical isolation layer includes a non-gaseous material between the propagation region and the loss structure, and is configured to increase an amount of light that is totally internal reflected in the propagation region. The plurality of display elements are positioned to receive the light redirected out of the propagation region. The loss structure is positioned between the plurality of display elements and the propagation region.
摘要:
In various embodiments described herein, a display device includes a front illumination apparatus that comprises a first light guide disposed forward of an array of display elements, such as an array of interferometric modulators, to distribute light across the array of display elements. The light guide panel is edge illuminated by a light source positioned behind the array display elements. The light from such a light source is coupled to a second light guide disposed behind the array of display elements and positioned laterally with respect to the light source. The light in the second light guide is coupled into the first light guide using a small optical coupling element such as a turning mirror. In some embodiments the second light guide may comprise the backplate of the display device.
摘要:
Described herein, is a device comprising a light guiding layer optically coupled to a photocell (1303). A plurality of surface features (S1) are formed on the top surface of the light guiding layer. The surface features (S1) can comprise facets that are angled with respect to each other. Light (1309) incident on the surface of the light guide is refracted by the surface features and guided through the light guide by multiple total internal reflections. The guided light is directed towards a photocell.
摘要:
In various embodiments described herein, a device comprising a light guiding layer (105) optically coupled to a photocell (100) is described. A plurality of surface features (108) are formed on one the surface of the light guiding layer. The surface features (108) can comprise facets that are angled with respect to each other. Light (112) incident on the surface of the light guide is redirected by the surface features and guided through the light guide by multiple total internal reflections. The guided light (112) is directed towards a photocell (100).
摘要:
Certain embodiments include interferometrically tuned photovoltaic cells wherein reflection from interfaces of layered photovoltaic devices coherently sum to produce an increased field in an active region of the photovoltaic cell where optical energy is converted into electrical energy. Such interferometrically tuned or interferometric photovoltaic devices (iPV) increase the absorption of optical energy in the active region of the interferometric photovoltaic cell and thereby increase the efficiency of the device. In various embodiments, one or more optical resonant cavities and/or optical resonant layers is included in the photovoltaic device to increase the electric field concentration and the absorption in the active region.
摘要:
A front light guide panel including a plurality of embedded surface features is provided. The front light panel is configured to deliver uniform illumination from an artificial light source disposed at one side of the font light panel to an array of display elements located behind the front light guide while allowing for the option of illumination from ambient lighting transmitted through the light guide panel. The surface embedded surface relief features create air pockets within the light guide panel. Light incident on the side surface of the light guide propagates though the light guide until it strikes an air/light material guide interface at one on the air pockets. The light is then turned by total internal reflection through a large angle such that it exits an output face disposed in front of the array of display elements.
摘要:
Various embodiments of a display device described herein include an optical propagation region (97), at least one optical loss structure (93), an optical isolation layer (95), and a plurality of display elements (91). The propagation region includes a light guide in which light is guided via total internal reflection and turning features configured to redirect the light out of the propagation region. The loss structure would disrupt the total internal reflection of at least some of the light guided within the propagation region if disposed directly adjacent thereto. The optical isolation layer includes a non-gaseous material between the propagation region and the loss structure, and is configured to increase an amount of light that is totally internal reflected in the propagation region. The plurality of display elements are positioned to receive the light redirected out of the propagation region. The loss structure is positioned between the plurality of display elements and the propagation region.
摘要:
Various embodiments of a display device described herein include an optical propagation region (97), at least one optical loss structure (93), an optical isolation layer (95), and a plurality of display elements (91). The propagation region includes a light guide in which light is guided via total internal reflection and turning features configured to redirect the light out of the propagation region. The loss structure would disrupt the total internal reflection of at least some of the light guided within the propagation region if disposed directly adjacent thereto. The optical isolation layer includes a non-gaseous material between the propagation region and the loss structure, and is configured to increase an amount of light that is totally internal reflected in the propagation region. The plurality of display elements are positioned to receive the light redirected out of the propagation region. The loss structure is positioned between the plurality of display elements and the propagation region.