摘要:
Data from a source domain (311 ) operating at a first data rate is transferred to a FIFO (319) in another domain (313) operating at a different data rate. The FIFO (319) buffers data before transfer to a sink for further processing or storage. A source side counter (325) tracks space available in the FIFO. In disclosed examples, the initial counter value corresponds to FIFO depth. The counter (325) decrements in response to a data ready signal from the source domain (311)1 without delay. The counter (325) increments in response to signaling from the sink domain (313) of a read of data off the FIFO (319). Hence, incrementing is subject to the signaling latency between domains. The source (315) may send one more beat of data when the counter (325) indicates the FIFO (319) is full. The last beat of data is continuously sent from the source until it is indicated that a FIFO position became available; effectively providing one o more FIFO positions.
摘要:
One or more architected registers in a processor are fractional-word writable, and data from plural misaligned memory access operations are assembled directly in an architected register, without first assembling the data in a fractional-word writable, non-architected register and then transferring it to the architected register. In embodiments where a general-purpose register file utilizes register renaming or a reorder buffer, data from plural misaligned memory access operations are assembled directly in a fractional-word writable architected register, without the need to fully exception check both misaligned memory access operations before performing the first memory access operation.
摘要:
A processor includes a cache memory having at least one entry managed according to a copy-back algorithm. A global modified indicator (GMI) indicates whether any copy-back entry in the cache contains modified data. On a cache miss, if the GMI indicates that no copy-back entry in the cache contains modified data, data fetched from memory are written to the selected entry without first reading the entry. In a banked cache, two or more bank-GMIs may be associated with two or more banks. In an n-way set associative cache, n set-GMIs may be associated with the n sets. Suppressing the read to determine if the copy-back cache entry contains modified data improves processor performance and reduces power consumption.
摘要:
A method of managing cache partitions provides a first pointer for higher priority writes and a second pointer for lower priority writes, and uses the first pointer to delimit the lower priority writes. For example, locked writes have greater priority than unlocked writes, and a first pointer may be used for locked writes, and a second pointer may be used for unlocked writes. The first pointer is advanced responsive to making locked writes, and its advancement thus defines a locked region and an unlocked region. The second pointer is advanced responsive to making unlocked writes. The second pointer also is advanced (or retreated) as needed to prevent it from pointing to locations already traversed by the first pointer. Thus, the pointer delimits the unlocked region and allows the locked region to grow at the expense of the unlocked region.
摘要:
A processor includes a cache memory having at least one entry managed according to a copy-back algorithm. A global modified indicator (GMI) indicates whether any copy-back entry in the cache contains modified data. On a cache miss, if the GMI indicates that no copy-back entry in the cache contains modified data, data fetched from memory are written to the selected entry without first reading the entry. In a banked cache, two or more bank-GMIs may be associated with two or more banks. In an n-way set associative cache, n set-GMIs may be associated with the n sets. Suppressing the read to determine if the copy-back cache entry contains modified data improves processor performance and reduces power consumption.