TRAINING, RECOGNITION, AND GENERATION IN A SPIKING DEEP BELIEF NETWORK (DBN)
    6.
    发明公开
    TRAINING, RECOGNITION, AND GENERATION IN A SPIKING DEEP BELIEF NETWORK (DBN) 审中-公开
    EINEM SPIKING-DBN-NETZWERK培训ERKENNUNG UND ERZEUGUNG

    公开(公告)号:EP3123405A2

    公开(公告)日:2017-02-01

    申请号:EP15719876.3

    申请日:2015-03-17

    IPC分类号: G06N3/04 G06N3/08

    摘要: A method of distributed computation includes computing a first set of results in a first computational chain with a first population of processing nodes and passing the first set of results to a second population of processing nodes. The method also includes entering a first rest state with the first population of processing nodes after passing the first set of results and computing a second set of results in the first computational chain with the second population of processing nodes based on the first set of results. The method further includes passing the second set of results to the first population of processing nodes, entering a second rest state with the second population of processing nodes after passing the second set of results and orchestrating the first computational chain.

    摘要翻译: 一种分布式计算的方法包括:在具有第一种处理节点的第一计算链中计算第一组结果,并将第一组结果传递给第二种处理节点。 该方法还包括在通过第一组结果之后,与处理节点的第一群体一起输入第一休息状态,并且基于第一组结果在第一计算链中与第二种处理节点计算第二组结果。 所述方法还包括将所述第二组结果传递到所述第一处理节点群,在通过所述第二组结果并编排所述第一计算链之后,与所述第二处理节点群进入第二休息状态。

    DIFFERENTIAL ENCODING IN NEURAL NETWORKS
    7.
    发明公开
    DIFFERENTIAL ENCODING IN NEURAL NETWORKS 审中-公开
    NEURONALEN NETZEN的DIFFERENZIELLE CODIERUNG

    公开(公告)号:EP3123404A2

    公开(公告)日:2017-02-01

    申请号:EP15716612.5

    申请日:2015-03-17

    IPC分类号: G06N3/04

    摘要: Differential encoding in a neural network includes predicting an activation value for a neuron in the neural network based on at least one previous activation value for the neuron. The encoding further includes encoding a value based on a difference between the predicted activation value and an actual activation value for the neuron in the neural network.

    摘要翻译: 神经网络中的差分编码包括基于神经元的至少一个以前的激活值来预测神经网络中神经元的激活值。 编码还包括基于预测的激活值和神经网络中的神经元的实际激活值之间的差来编码值。