摘要:
This disclosure features fusion proteins comprising a base protein linked to or incorporated in a CH2 scaffold of IgG. The CH2 scaffold can derive from the macaque CH2 domain of IgG. The fusion proteins can effectively bind a single or multiple targets, and can be engineered to regulate effector functions as desired. The fusion proteins can have an increased serum half-life, solubility, stability, protease resistance, and/or expression as compared to the scaffolds alone and/or as compared to the base protein alone. This disclosure also features fusion proteins comprising a base protein, a CH2 scaffold and a discrete polyethylene glycol (dPEG) linked to the scaffold via a serine, tyrosine, cysteine, lysine, or a glycosylation site of the scaffold. This disclosure additionally features scaffolds linked to a discrete polyethylene glycol (dPEG) via a serine, tyrosine, cysteine, or lysine of the scaffolds or a glycosylation site of the scaffold.
摘要:
Viable Gram-negative bacteria or components thereof comprising outer membranes that substantially lack a ligand, such as Lipid A or 6-acyl lipidpolysaccharide, that acts as an agonist of TLR4/MD-2. The bacteria may comprise reduced activity of arabinose-5-phosphate isomerases and one or more suppressor mutations, for example in a transporter thereby increasing the transporter's capacity to transport lipid IVA or in membrane protein YhjD. One or more genes (e.g., lpxL, lpxM, pagP, lpxP, and/or eptA) may be substantially deleted and/or one or more enzymes (e.g., LpxL, LpxM, PagP, LpxP, and/or EptA) may be substantially inactive. The bacteria may be competent to take up extracellular DNA, may be donor bacteria, or may be members of a library. The present invention also features methods of creating and utilizing such bacteria.
摘要:
Viable Gram-negative bacteria or components thereof comprising outer membranes that substantially lack a ligand, such as Lipid A or 6-acyl lipidpolysaccharide, that acts as an agonist of TLR4/MD-2. The bacteria may comprise reduced activity of arabinose-5-phosphate isomerases and one or more suppressor mutations, for example in a transporter thereby increasing the transporter's capacity to transport lipid IVA or in membrane protein YhjD. One or more genes (e.g., lpxL, lpxM, pagP, lpxP, and/or eptA) may be substantially deleted and/or one or more enzymes (e.g., LpxL, LpxM, PagP, LpxP, and/or EptA) may be substantially inactive. The bacteria may be competent to take up extracellular DNA, may be donor bacteria, or may be members of a library. The present invention also features methods of creating and utilizing such bacteria.
摘要:
Novel CH2 domain template molecules wherein donor loops from a database of domains are transferred to a CH2 domain scaffold. At least one or up to three loops from a donor are transferred to the CH2 domain. The donor loops may be chosen based on length, e.g., the donor loop may have a length that is similar to that of a structural loop in the CH2 domain scaffold.