摘要:
Providing a catalytic process for preparing 1,4-diketone compounds from furanic compounds and their precursors in a liquid medium, using an acid catalytic system and optionally in the presence of hydrogen and a hydrogenation catalyst, wherein the acidic catalytic system comprises a solid acid catalyst or a mixture of water and CO2.
摘要:
The invention relates to a photovoltaic coating containing a mixture of organic N-type (acceptor) and P-type (donor) semiconductor compounds, which makes it possible, when selecting the donor/acceptor pair, to modulate the semiconductor properties of the photovoltaic coating so as to enable the use thereof within a photovoltaic device, wherein one of the organic semiconductors includes a quinone core.
摘要:
A flame retardant polymer composition is described. The composition can include at least one polymer and a hypophosphite salt, wherein the hypophosphite salt is heat stabilized so that when it is heated for 3 hours at 298° C. under a flow of argon flushing at rate 58 mL/min, it generates less than 0.5 mL of phosphine per gram of hypophosphite salt. The polymer can be an epoxy resin, a phenolic resin, an acrylonitrile-butadiene-styrene resin, a styrene-acrylonitrile resin, a mixture of high impact polystyrene and polyphenylene oxides, a styrene-butadiene rubber, a polylactic acid or a polyvinyl chloride.
摘要:
A process for preparing a 5-halophenol, ortho-substituted by an electron-donating group, is described. Also described, is a process for preparing a sulphonic ester of an ortho-substituted phenol, which is the synthesis intermediate for the ortho-substituted 5-halophenol. The process for preparing a phenol ortho-substituted by an electron-donating group and protected in the form of a sulphonic ester can include reacting a phenol ortho-substituted by an electron-donating group with a sulphonylating agent in the presence of a Lewis acid. The process for preparing a 5-halophenol ortho-substituted by an electron-donating group can include a first step of preparing a phenol ortho-substituted by an electron-donating group and protected in the form of a sulphonic ester, as described above; a second step of halogenating the protected phenol intermediate obtained in the preceding step, in the position para to the electron-donating group; and a third step of deprotecting the sulphonic ester function to hydroxyl.
摘要:
Disclosed are methods of determining the effectiveness of an asphaltene deposition inhibitor in oilfield applications. Such methods typically comprising the steps of introducing an oil well fluid into a microfluidic/millifluidic system; introducing a mixture of an asphaltene deposition inhibitor and carrier into the microfluidic/millifluidic system; introducing a precipitating agent, typically comprising heptane, into the microfluidic/millifluidic system; and optionally introducing toluene into the microfluidic/millifluidic system; then observing the presence or absence of asphaltene aggregation within the microfluidic/millifluidic system.