Abstract:
The invention relates to a method for decision support of a first combat aircraft (1) in a combat situation comprising the steps of: a) detecting (3) a second combat aircraft (2), wherein the second combat aircraft (2) is different from the first combat aircraft (1), b) analyzing (4) the second combat aircraft (2) to determine its type, its sensor capacity and its total weapons capacity, and c) recording (5) the sensor capacity and the total weapons capacity of the second combat aircraft (2) to determine a first geographic zone adapted for defining the detection limit of the second combat aircraft (2) and a second geographic zone adapted for defining a shoot-down limit of the second combat aircraft (2), respectively, wherein the first and the second geographic zone are adapted for decision support of the first combat aircraft (1) in the combat situation with the second combat aircraft (2). In this way, a possibility is provided to assist the pilot in decision support in complicated combat situations while being reliable, fast and easy to handle for the pilot in order to make a quick and efficient decision.
Abstract:
The invention relates to a method for decision support of a first combat aircraft in a duel situation with a second combat aircraft. The method comprises the steps of: a) determining (3) a first plurality of combat value parameters of the first combat aircraft (1) and determining (3) a second plurality of combat value parameters of the second combat aircraft (2), wherein the second combat aircraft (2) is different to the first combat aircraft (1), b) analyzing (4) the first and the second plurality of combat value parameters determined in the previous step (step a)) by fitting the first and the second plurality of combat value parameters to a predefined model, and c) combining (5) the first plurality of combat value parameters analyzed in the previous step (step b) ) to calculate a first value and combining (5) the second plurality of combat value parameters analyzed in the previous step (step b) ) to calculate a second value, wherein the first value and the second value are compared to each other to determine the optimum success probability data of the first combat aircraft (1) and of the second combat aircraft (2) adapted for decision support in the duel situation. In this way, a reliable and fast tool for the pilot is provided while the tool is easy to handle and assists the pilot in order to make a quick and efficient decision in duel situations.
Abstract:
The invention relates to a method for controlling a sensor in a combat aircraft (1) comprising the steps of: a) determining (3) direction and size of a defence zone around the combat aircraft (1) based on a plurality of characteristic parameters of an enemy combat aircraft (2), b) determining (4) direction and size of at least one offence zone around the combat aircraft (1) based on the plurality of characteristic parameters of the enemy combat aircraft (2), and c) controlling (5) the sensor in the combat aircraft (1) according to emission level and detection capacity within at least one of the defence zone and the at least one offence zone. In this way, the sensors are controlled reliably and thus the pilot can act and react mission-oriented.
Abstract:
The invention relates to a method for decision support of a combat object (1 ) in a combat situation comprising the steps of: a) detecting (3) an enemy object (2) such that a plurality of characteristic parameters of the enemy object (2) is determined, b) calculating (4) at least one quality factor for at least one combat sensor of the combat object (1 ), wherein each quality factor is adapted for indicating identification ability of a combat sensor, and calculating (4) at least one signature factor for at least one enemy sensor of the enemy object (2) based on a predetermined model, wherein each signature factor is adapted for indicating identification ability of an enemy sensor, c) allocating (5) each quality factor calculated in the previous step b) to each combat sensor and allocating (5) each signature factor calculated in the previous step b) to each enemy sensor, and d) controlling (6) each combat sensor against the enemy object (2) based on the result of the previous step c). In this way, support for the pilot on a target-oriented basis is provided in order to make a quick and efficient decision in a combat situation.