Abstract:
The invention relates to a method for operating a pulsed radar system, wherein the pulsed radar system comprises a transmitting antenna, configured to transmit transmission signals, a receiving antenna, configured to receive reflected signals and a signal generating means, configured to generate transmission signals. The method comprises the steps of generating a first transmission signal at a first centre frequency, generating a second transmission signal at a second centre frequency and transmitting the first and the second transmission signals during a predefined transmission time window. The first transmission signal is significantly longer than the second transmission signal. The transmission of the second transmission signal starts during or at the end of the transmission of the first transmission signal and ends essentially at the end of the transmission time window. When the first and/or second transmission signal hits a target a first reflected signal and/or a second reflected signal is generated, wherein the centre frequency of the first reflected signal correlate to the centre frequency of the first transmission signal and the centre frequency of the second reflected signal correlate to the centre frequency of the second transmission signal, and wherein the method further comprises the method step of receiving the first and/or second reflected signal.
Abstract:
A radar system for detecting and tracking at least one target utilizing a mechanically rotated two-dimensional radar antenna system with a fan-shaped beam arrangeable on a non-stable radar platform. The radar system includes a tracking filter configured to estimate an azimuth angle of the at least one target with respect to a fixed reference coordinate system based on: azimuth angle information of at least one target radar return signal measured utilizing the radar antenna system with respect to a local coordinate system of the radar platform, and radar platform relative orientation with respect to the fixed reference coordinate system at the time of the at least one target radar return signal, such that a software-based motion-compensation of the radar platform is provided.