摘要:
A liquid jetting apparatus receives delivery of liquid from a liquid delivery system including a delivery system-side terminal. The liquid jetting apparatus includes a apparatus-side terminal, a contact sensing portion and a remaining level sensor portion. The apparatus-side terminal contacts the delivery system-side terminal when receiving delivery of liquid from the liquid delivery system. The contact sensing portion supplies a first electrical signal to the apparatus-side terminal to sense contact between the apparatus-side terminal and the system-side terminal. The remaining level sensor portion supplies a second electrical signal different from the first electrical signal to the apparatus-side terminal to sense a liquid volume in the liquid delivery system.
摘要:
The present invention provides a technique that prevents a shift of a driving waveform due to accumulation of errors in a process of generating the driving waveform to drive driving elements on a print head. The technique of the present invention successively sums up a plurality of gradient data at a preset calculation period to give a result of summation and carries out digital-to-analog (D-A) conversion with regard to only specific upper columns in the result of summation in synchronism with the preset calculation period, so as to generate a driving waveform. Each gradient data represents a local gradient of the driving waveform and is stored in a memory. In the process of generating the driving waveform, the technique of the present invention corrects the result of summation to a preset value under a predetermined condition. One preferable embodiment clears specific lower bits in the result of summation in synchronism with a floor signal. Another preferable embodiment forcibly corrects the result of summation to an upper limit value or a lower limit value of a preset range when the result of summation exceeds the preset range. Such correction effectively cancels the potential effects of cumulative error on the driving waveform.
摘要:
A liquid-quantity monitoring apparatus includes: a piezoelectric device (106) having a vibrating part (176) capable of being exposed at least partly to a liquid-containing space, the piezoelectric device (106) being capable of vibrating the vibrating part by a given drive signal and of generating a signal representing back electromotive force generated by vibration of the vibrating part; and a liquid-quantity determining unit for determining a quantity of liquid remaining in the liquid-containing space, to which the vibrating part is exposed, based on a resonance frequency of a residual vibration signal output from the piezoelectric device (106) due to a residual vibration of the vibrating part after the vibrating part has been vibrated by the drive signal. The liquid-quantity determining unit counts a number of pulses included in the residual vibration signal, measures a time period necessary for counting a predetermined number of pulses after starting counting the pulses, and determines the quantity of the liquid based on the time period measured. The liquid-quantity determining unit repeats a pulse-counting operation for counting the predetermined number of pulses with different starting time points, and decides that a measurement is incorrect when differences between the time periods are greater than a predetermined allowable limit.
摘要:
The present invention provides a technique that prevents a shift of a driving waveform due to accumulation of errors in a process of generating the driving waveform to drive driving elements on a print head. The technique of the present invention successively sums up a plurality of gradient data at a preset calculation period to give a result of summation and carries out digital-to-analog (D-A) conversion with regard to only specific upper columns in the result of summation in synchronism with the preset calculation period, so as to generate a driving waveform. Each gradient data represents a local gradient of the driving waveform and is stored in a memory. In the process of generating the driving waveform, the technique of the present invention corrects the result of summation to a preset value under a predetermined condition. One preferable embodiment clears specific lower bits in the result of summation in synchronism with a floor signal. Another preferable embodiment forcibly corrects the result of summation to an upper limit value or a lower limit value of a preset range when the result of summation exceeds the preset range. Such correction effectively cancels the potential effects of cumulative error on the driving waveform.