摘要:
In order to improve the outflow channel for melt-down products, the device has an antechamber (11) located below the pressure vessel (1) and an expansion chamber (19) for the melt-down products located to one side of the pressure vessel (1). The expansion chamber (19) is connected to the antechamber by a channel (17). A base unit (9) forms the floor of at least the antechamber (11) and is made of a material with a high thermal conductivity.
摘要:
In a nuclear reactor installation, light water reactors in particular, a core containment device (CC) with a coolable core catcher (19) is located in a reactor cavern (8) below the reactor vessel (6). The core catcher (19) has a surrounding side wall (21) extending at least to approximately the height of the reactor core (10) and a base wall (20). Both base and side walls (20, 21) of the core catcher (19) are positioned to leave a space (28) with respect to the base (7.1) and peripheral wall (7.2) of a support and protection structure (7) for the reactor vessel (6). In its base and side areas, the space (28) houses cooling channels (29.1, 29.2) for external cooling of the core catcher (19) with a coolant and, in the planar zone of the base wall (20), turbulence units (34, 34a) generating a turbulent flow of the coolant in an outward direction from the inside, passing through the base wall (20) to the side wall (21). The invention also describes the core containment device (CC) itself, a method for starting and maintaining external emergency cooling for the core catcher (19) and the use of turbulence generating delta wings in the cooling system, positioned in the base wall of the core catcher (19).
摘要:
Dans une installation pour réacteurs nucléaires, notamment pour réacteurs à eau légère, un dispositif de confinement du coeur (CC) pourvu d'un réservoir collecteur (19) refroidissable est disposé à l'intérieur d'une caverne de réacteur (8) et au-dessous de la cuve de réacteur (6). Le réservoir collecteur (19) comporte une paroi d'enveloppe (21) qui s'étend au moins environ jusqu'à la hauteur du coeur du réacteur (10), et une paroi de fond (20). Les parois de fond et d'enveloppe (20, 21) du réservoir collecteur (19) sont montées avec un espace intermédiaire (28) par rapport au fond (7.1) ou à la paroi circonférentielle (7.2) d'une structure de support et de protection (7) de la cuve de réacteur (6). Dans cet espace intermédiaire sont ménagés des canaux de refroidissement (29.1, 29.2) côté fond et côté enveloppe pour le refroidissement externe du réservoir collecteur (19) avec un liquide de refroidissment ainsi que, dans la région plane de la paroi de fond (20), des éléments à turbulence (34, 34a) pour produire un écoulement turbulent du liquide de refroidissement s'écoulant de l'intérieur vers l'extérieur jusqu'à la paroi d'enveloppe (21) en passant par la paroi de fond (20). Sont aussi décrits le dispositif de confinement du coeur (CC) lui-même, un procédé pour la mise en action et le maintien d'un refroidissement externe de secours du réservoir collecteur (19) ainsi que l'utilisation d'ailes delta produisant des turbulences, qui sont implantées dans le système de refroidissement du réservoir collecteur (19), dans la région de la paroi de fond de ce dernier.
摘要:
A nuclear reactor has a propagation chamber (4) for the molten core (17) equipped with a coolant pipe (6) that leads to a coolant reservoir and has a temperature-dependent opening device (16). The coolant pipe (6) in the propagation chamber (4) is a spraying pipe whose spraying surface corresponds to the cross-section of the propagation chamber (4). The opening device (16) is controlled in such a way that it opens when the molten core (17) enters the propagation chamber (4). The sprayed coolant forms a crust on the molten core (17), reducing its heat radiation. At the same time, the propagation chamber (4) is filled with a vapour atmosphere that drastically reduces the thermal stresses to which the building structures are subjected.
摘要:
The device proposed comprises an antechamber (30) located below the reactor pressure vessel (4) and connected by a channel (36) to an expansion chamber (34). Fitted over the inlet to the channel (36) is a bulkhead or partition (38) which is destroyed by the reactor-meltdown products within a predetermined time interval after the arrival of the meltdown products. A coolant reservoir (50) is connected to the expansion chamber (34), the connection being closed off by a closure element (48) which is also destroyed by the meltdown products. If the closure element is destroyed, by being melted or burst for instance, the coolant flows on to the meltdown products in the expansion chamber (34) and the meltdown products are efficiently cooled.
摘要:
A nuclear reactor has a propagation chamber (4) for the molten core (17) equipped with a coolant pipe (6) that leads to a coolant reservoir and has a temperature-dependent opening device (16). The coolant pipe (6) in the propagation chamber (4) is a spraying pipe whose spraying surface corresponds to the cross-section of the propagation chamber (4). The opening device (16) is controlled in such a way that it opens when the molten core (17) enters the propagation chamber (4). The sprayed coolant forms a crust on the molten core (17), reducing its heat radiation. At the same time, the propagation chamber (4) is filled with a vapour atmosphere that drastically reduces the thermal stresses to which the building structures are subjected.
摘要:
In order to improve the outflow channel for melt-down products, the device has an antechamber (11) located below the pressure vessel (1) and an expansion chamber (19) for the melt-down products located to one side of the pressure vessel (1). The expansion chamber (19) is connected to the antechamber by a channel (17). A base unit (9) forms the floor of at least the antechamber (11) and is made of a material with a high thermal conductivity.
摘要:
The device proposed comprises an antechamber (30) located below the reactor pressure vessel (4) and connected by a channel (36) to an expansion chamber (34). Fitted over the inlet to the channel (36) is a bulkhead or partition (38) which is destroyed by the reactor-meltdown products within a predetermined time interval after the arrival of the meltdown products. A coolant reservoir (50) is connected to the expansion chamber (34), the connection being closed off by a closure element (48) which is also destroyed by the meltdown products. If the closure element is destroyed, by being melted or burst for instance, the coolant flows on to the meltdown products in the expansion chamber (34) and the meltdown products are efficiently cooled.