摘要:
Disclosed is a homogeneous catalyst system for producing an ethylene homopolymer or an ethylene copolymer with α-olefin. Specifically, this invention pertains to a transition metal catalyst which has stability under high temperature solution polymerization at 120 ~ 250 °C, in which a cyclopentadiene derivative and an electron donating substituent, both of which are bonded to a Group IV transition metal acting as a central metal, are crosslinked through a silyl derivative substituted with a cyclohexyl, to a catalyst system including such a transition metal catalyst and an aluminoxane cocatalyst or a boron compound cocatalyst, and to a method of producing an ethylene homopolymer or an ethylene copolymer with α-olefin, having high molecular weight, using the catalyst system under conditions of high-temperature solution polymerization. The catalyst according to this invention has excellent thermal stability and compatibility with a paraffin hydrocarbon solvent and thus is effective in the production of an ethylene homopolymer or an ethylene copolymer with α-olefm having various properties in commercial polymerization processes.
摘要:
Disclosed is an arylphenoxy catalyst system for producing an ethylene homopolymer or copolymers of ethylene and α-olefins, and a method of producing an ethylene homopolymer or copolymers of ethylene and α-olefins having a high molecular weight under a high temperature solution polymerization condition using the same. The catalyst system includes a 4 group arylphenoxy-based transition metal catalyst and an aluminoxane cocatalyst or a boron compound cocatalyst. In the transition metal catalyst, a cyclopentadiene derivative and arylphenoxide as fixed ligands are located around the 4th group transition metal, arylphenoxide is substituted with at least one aryl derivative and is located at the ortho position thereof, and the ligands are not crosslinked to each other. The catalyst includes an environmentally-friendly raw material, synthesis of the catalyst is economical, and thermal stability of the catalyst is excellent. It is useful for producing an ethylene homopolymer or copolymers of ethylene and α-olefins having various physical properties in commercial polymerization processes.
摘要:
Disclosed are an ethylene polymerization process, a catalyst for use in the process, a production method employing the catalyst, and a product produced thereby. More specifically, disclosed is a process of producing an ethylene copolymer from ethylene and an alpha-olefin comonomer, in which the produced ethylene copolymer has a multimodal molecular weight distribution and excellent processability and physical properties, and thus can increase the value and productivity of products, including pipes and films. Particularly, the produced ethylene copolymer has a trimodal or higher molecular weight distribution or density distribution, and thus, when it is a linear low-density copolymer, it has an excellent effect of improving the impact strength of films, and when it is a medium-density ethylene copolymer, it can be produced into pipes, which have slow crack growth rate and can be used even at high temperature.
摘要:
Disclosed herein is a method of preparing 1-octene at high activity and high selectivity while stably maintaining reaction activity by tetramerizing ethylene using a chromium-based catalyst system comprising a transition metal or a transition metal precursor, a cocatalyst, and a P-C-C-P backbone structure ligand represented by (R1)(R2)P-(R5)CHCH(R6)-P(R3)(R4).
摘要:
The present invention relates to a method of preparing an ethylene polymerization catalyst, which comprises reacting a solid reaction product of magnesium halide (such as magnesium chloride), alcohol, an organic magnesium compound, and a halogen compound with a transition metal compound and an electron donor. When ethylene and a-olefin are co-polymerized by slurry polymerization in the presence of the above catalyst, the amount of wax component extracted by the polymerization solvent is very low, and the polymer particles do not agglomerate. The catalyst is prepared in the form of so uniform particles that the resultant polymer has uniform particle morphology, thus increasing bulk density.
摘要:
Disclosed is an arylphenoxy catalyst system for producing an ethylene homopolymer or copolymers of ethylene and α-olefins, and a method of producing an ethylene homopolymer or copolymers of ethylene and α-olefins having a high molecular weight under a high temperature solution polymerization condition using the same. The catalyst system includes a group 4 arylphenoxy-based transition metal catalyst and an aluminoxane cocatalyst or a boron compound cocatalyst. In the transition metal catalyst, a cyclopentadiene derivative and arylphenoxide as fixed ligands are located around the group 4 transition metal, arylphenoxide is substituted with at least one aryl derivative and at least one halogen compound, and is located at the ortho position thereof, and the ligands are not crosslinked to each other. The catalyst includes environmentally friendly raw materials, synthesis of the catalyst is economical, and thermal stability of the catalyst is excellent. It is useful for producing an ethylene homopolymer or copolymers of ethylene and α-olefins having various physical properties in commercial polymerization processes.
摘要:
Disclosed herein is a group IV transition metal catalyst for producing an ethylene homopolymer or an ethylene-olefin copolymers, having high catalytic activity, which includes a cyclopentadiene derivative and one or more anionic ligands having an aryl group substituted with an aryl derivative at an ortho-position thereof around a transition metal, the ligands not being crosslinked to each other, a catalyst system including the group IV transition metal catalyst and an aluminoxane cocatalyst or a boron compound cocatalyst, and a method of producing ethylene homopolymers or ethylene-olefin copolymers using the catalyst system.
摘要:
The present invention relates to a bis-arylaryloxy catalyst system for the production of ethylene homopolymers or copolymers with α-olefins, which has high catalytic activity. More particularly, it relates to a transition metal catalyst comprising a group-IV transition metal as a central metal, a cyclopentadiene derivative around the central metal, and two aryloxide ligands substituted with aryl derivatives at the ortho-positions, the ligands not being bridged to each other, as well as a catalyst system comprising said catalyst and an aluminoxane co-catalyst or a boron compound co-catalyst, and a method for producing high-molecular-weight ethylene homopolymers or copolymers with α-olefins using the same.