Abstract:
Disclosed are an underwater moving apparatus and a moving method thereof. The underwater moving apparatus of an exemplary embodiment of the present invention includes a body; a propelling device installed on a rear side of the body; a thruster unit including an up and down directional thruster and a left and right directional thruster installed at the body; and a plurality of leg units positioned at both side portions of the body and including a multi-joint module.
Abstract:
Provided is a natural gas liquefaction apparatus including: a cryogenic heat exchanger through which natural gas passes through and is liquefied into liquefied natural gas (LNG) through heat exchange with a first refrigerant and a second refrigerant; a first refrigerant cycle through which the first refrigerant circulates, which has some paths passing through the cryogenic heat exchanger to perform heat exchange, and which has a path of the first refrigerant divided into a plurality of paths after performing heat exchange at the cryogenic heat exchanger and performs expansion and pre-compression of the first refrigerant; and a second refrigerant cycle through which the second refrigerant circulates and which has some paths passing though the cryogenic heat exchanger.
Abstract:
The present invention relates to a fluid cooling apparatus that is capable of improving liquefaction efficiency of a fluid by appropriately cooling the fluid in various temperature ranges through a simple process. The fluid cooling apparatus includes an expansion unit including a plurality of expanders, which receive refrigerants through a plurality of paths to expand the refrigerants and discharge the expanded refrigerants having different temperatures, a heat exchanger receiving the refrigerants having different temperatures from the expansion unit to cool the fluid in multistages, a precompression unit including a plurality of precompressors, which receive the refrigerants passing through the heat exchanger to compress the refrigerants and discharge the compressed refrigerants at the same pressure, a mixing tube configured to mix the refrigerants discharged from the precompression unit to supply the mixed refrigerant, and a main compression unit connected to the mixing tube to compress the mixed refrigerant and supply the compressed refrigerant to the expansion unit.