摘要:
A method of making a monolithic three dimensional NAND string including providing a stack of alternating first material layers and second material layers over a substrate. The first material layers comprise an insulating material and the second material layers comprise sacrificial layers. The method also includes forming a back side opening in the stack, selectively removing the second material layers through the back side opening to form back side recesses between adjacent first material layers and forming a blocking dielectric (7) inside the back side recesses and the back side opening. The blocking dielectric (7) has a clam shaped regions inside the back side recesses. The method also includes forming a plurality of copper control gate electrodes (3) in the respective clam shell shaped regions of the blocking dielectric in the back side recesses.
摘要:
Methods of making monolithic three-dimensional memory devices include performing a first etch to form a memory opening and a second etch using a different etching process to remove a damaged portion of the semiconductor substrate from the bottom of the memory opening. A single crystal semiconductor material is formed over the substrate in the memory opening using an epitaxial growth process. Additional embodiments include improving the quality of the interface between the semiconductor channel material and the underlying semiconductor layers in the memory opening which may be damaged by the bottom opening etch, including forming single crystal semiconductor channel material by epitaxial growth from the bottom surface of the memory opening and/or oxidizing surfaces exposed to the bottom opening etch and removing the oxidized surfaces prior to forming the channel material. Monolithic three-dimensional memory devices formed by the embodiment methods are also disclosed.
摘要:
Methods of making monolithic three-dimensional memory devices include performing a first etch to form a memory opening and a second etch using a different etching process to remove a damaged portion of the semiconductor substrate from the bottom of the memory opening. A single crystal semiconductor material is formed over the substrate in the memory opening using an epitaxial growth process. Additional embodiments include improving the quality of the interface between the semiconductor channel material and the underlying semiconductor layers in the memory opening which may be damaged by the bottom opening etch, including forming single crystal semiconductor channel material by epitaxial growth from the bottom surface of the memory opening and/or oxidizing surfaces exposed to the bottom opening etch and removing the oxidized surfaces prior to forming the channel material. Monolithic three-dimensional memory devices formed by the embodiment methods are also disclosed.