摘要:
It is an object of the present invention to avoid or reduce various problems or adverse effects by phase transition impurity substances when valuable substances such as ethanol are produced from a raw material gas containing the phase transition impurity substances such as naphthalene. A raw material gas g from a raw material gas generator 2 is passed through a phase transition impurity substance remover 10 to remove phase transition impurity substances such as naphthalene from the raw material gas g. Subsequently, the raw material gas g is passed through a solid/liquid catcher 30 to remove solid or liquid impurity substances from the raw material gas g. Subsequently, the raw material gas g is introduced to a valuable substance producing reactor 6, where a reaction occurs to produce valuable substances such as ethanol.
摘要:
It is an object of the present invention to downsize facility for removing or reducing concentration of hydrogen sulfide and oxygen in gas and reduce facility cost. Syngas g contains hydrogen sulfide and oxygen as target constituents of removal or reduction in concentration. Hydrogen sulfide content and oxygen content in the syngas g are measured in a preceding measurement part 13. Then, the syngas g is contacted with desulfurizing agent 14a including iron oxide. Selection is made whether to further execute deoxidization in a deoxidizing part 16 or omit or simplify the deoxidization according to results of measurements in the preceding measurement part 13.
摘要:
A device for manufacturing an organic substance, including: a synthesis gas generation unit for generating a synthesis gas; an impurity concentration reducing unit including an adsorbent which is capable of adsorbing impurities contained in the synthesis gas, and produces a purified gas by contact of the adsorbent with the synthesis gas; an organic substance synthesis unit for producing an organic substance-containing solution from the purified gas as a raw material; an extraction unit for extracting the organic substance by heating the organic substance-containing solution; a heating unit for preparing heated gas to be fed to the adsorbent; and a heat supplying unit which supplies the extraction unit with heat of the heated gas fed from the heating unit to the adsorbent.
摘要:
It is an objective of the present invention to provide a gas separation method by which a removal performance to remove a removal object gas component and a recovery rate to recover a recovery object gas component can be satisfied at the same time, and furthermore, a generation efficiency of a product gas can be improved. A raw material gas g0 is fed to one adsorption vessel 11 of an adsorbing device 10 and a permeated gas g1 is sent out. A pressure of the other the adsorption vessels 12 is made lower than a pressure during adsorption and a desorbed gas g2 is sent out. In accordance with an operating cycle of the adsorbing device 10 or according to a condition of the raw material gas g0 or the like, one of the permeated gas g1 and the desorbed gas g2 that has a lower concentration of a priority removal object gas component than the raw material gas g0 is provided as a return gas to the adsorbing device 10, the priority removal object gas component being a gas component to be preferentially removed.
摘要:
It is an object of the present invention to downsize facilities for removing hydrogen sulfide and oxygen in gas and reduce facility cost. Syngas g containing hydrogen sulfide and oxygen as target components for removal or reduction in concentration is contacted with a first material containing transition metal 41 and subsequently with a second material containing transition metal 42 in a first mode. The syngas g is contacted with the second material containing transition metal 42 and subsequently with the first material containing transition metal 41 in a second mode. The first mode and the second mode are alternately executed. In the first mode, iron oxide of the first material containing transition metal 41 reacts with the hydrogen sulfide to become iron sulfide that is reactable with the oxygen and iron sulfide of the second material containing transition metal 42 reacts with the oxygen to become iron oxide that is reactable with the hydrogen sulfide. In the second mode, the iron oxide of the second material containing transition metal 42 reacts with the hydrogen sulfide to become iron sulfide and the iron sulfide of the first material containing transition metal 41 reacts with the oxygen to become iron oxide.
摘要:
A system for producing an organic substance, including: a synthesis gas generation furnace for producing a synthesis gas by partially oxidizing a waste including a carbon source; a synthesis gas purification unit connected to the synthesis gas generation furnace and purifying the synthesis gas generated in the synthesis gas generation furnace to reduce an impurity concentration in the synthesis gas; and an organic substance synthesis unit which is connected to the synthesis gas purification unit and generates an organic substance from the synthesis gas purified in the synthesis gas purification unit, wherein the synthesis gas purification unit includes a detection unit for measuring an impurity concentration in the synthesis gas.
摘要:
Provided is a novel apparatus capable of suitably manufacturing an organic substance from a syngas. An apparatus 1 for manufacturing an organic substance includes a syngas producing furnace (11), an organic substance synthesis unit (16), a moisture content raising unit (12), and a moisture content lowering unit (13). The syngas producing furnace (11) is configured to produce a syngas containing carbon monoxide by partly oxidizing a carbon source. The organic substance synthesis unit (16) is configured to produce an organic substance from the syngas. The moisture content raising unit (12) is disposed between the syngas producing furnace (11) and the organic substance synthesis unit (16). The moisture content raising unit (12) is configured to raise a moisture content of the syngas. The moisture content lowering unit (13) is disposed between the moisture content raising unit (12) and the organic substance synthesis unit (16). The moisture content lowering unit (13) is configured to lower the moisture content of the syngas.