摘要:
A method of applying a PCMO thin film on an iridium substrate for use in a RRAM device, includes preparing a substrate; depositing a barrier layer on the substrate; depositing a layer of iridium on the barrier layer; spin coating a layer of PCMO on the layer of iridium; baking the layer of PCMO and substrate in a three-step baking process; post-bake annealing the substrate and the layer of PCMO in a RTP chamber; repeating said spin coating, baking and annealing steps until the layer of PCMO has a desired thickness; annealing the substrate and the layer of PCMO; depositing a top electrode; and completing the RRAM device.
摘要:
A method of forming a ferroelectric thin film on a high-k layer includes preparing a silicon substrate; forming a high-k layer on the substrate; depositing a seed layer of ferroelectric material at a relatively high temperature on the high-k layer; depositing a top layer of ferroelectric material on the seed layer at a relatively low temperature; and annealing the substrate, the high-k layer and the ferroelectric layers to form a ferroelectric thin film.
摘要:
A method of fabricating a CMOS device having improved electrostatic discharge protection properties includes preparing a silicon substrate; forming an n-well for a pMOS active region; forming a p-well for an nMOS active region; and implanting ions to form a lightly doped drain series resistor in at least on of the active regions. An electrostatic discharge protection structure for use in a CMOS device having a pMOST and an nMOST therein includes an electrostatic triggering structure to uniformly trigger both pMOST and nMOST output to protect against positive and negative electrostatic discharge events.
摘要:
A low-capacitance one-resistor/one-diode (1R1D) R-RAM array with a floating p-well is provided. The fabrication method comprises: forming an integrated circuit (IC) substrate (202); forming an n-doped buried layer (buried n layer) (204) of silicon overlying the substrate; forming n-doped silicon sidewalls (210) overlying the buried n layer; forming a p-doped well of silicon (p-well) (206) overlying the buried n layer; and, forming a 1R1D R-RAM array (208) overlying the p-well. Typically, the combination of the buried n layer and the n-doped sidewalls form an n-doped well (n-well) of silicon. Then, the p-well is formed inside the n-well. In other aspects, the p-well has sidewalls (212), and the method further comprises: forming an oxide insulator (214) overlying the p-well sidewalls, between the n-well and the R-RAM array.