Abstract:
Embodiments of the present invention provide a computer-implemented method for training an RGB-D classifier for a scene classification task. The method receives task-relevant labeled depth data, task-irrelevant RGB-D data, and a given trained representation in RGB. The method simulates an RGB representation using only the task-irrelevant RGB-D data. The method builds a joint neural network using only the task-irrelevant RGB-D data and the task-relevant labeled depth data.
Abstract:
A method for predicting short-term cloud coverage includes a computer calculating an estimated cloud velocity field at a current time value based on sky images. The computer determines a segmented cloud model based on the sky images, a future sun location corresponding to a future time value, and sun pixel locations at the future time value based on the future sun location. Next, the computer applies a back-propagation algorithm to the sun pixel locations using the estimated cloud velocity field to yield propagated sun pixel locations corresponding to a previous time value. Then, the computer predicts cloud coverage for the future sun location based on the propagated sun pixel locations and the segmented cloud model.
Abstract:
A method for predicting short-term cloud coverage includes a computer calculating an estimated cloud velocity field at a current time value based on sky images. The computer determines a segmented cloud model based on the sky images, a future sun location corresponding to a future time value, and sun pixel locations at the future time value based on the future sun location. Next, the computer applies a back-propagation algorithm to the sun pixel locations using the estimated cloud velocity field to yield propagated sun pixel locations corresponding to a previous time value. Then, the computer predicts cloud coverage for the future sun location based on the propagated sun pixel locations and the segmented cloud model.