Abstract:
A method for predicting short-term cloud coverage includes a computer calculating an estimated cloud velocity field at a current time value based on sky images. The computer determines a segmented cloud model based on the sky images, a future sun location corresponding to a future time value, and sun pixel locations at the future time value based on the future sun location. Next, the computer applies a back-propagation algorithm to the sun pixel locations using the estimated cloud velocity field to yield propagated sun pixel locations corresponding to a previous time value. Then, the computer predicts cloud coverage for the future sun location based on the propagated sun pixel locations and the segmented cloud model.
Abstract:
A method for performing cellular classification includes using a convolution sparse coding process to generate a plurality of feature maps based on a set of input images and a plurality of biologically-specific filters. A feature pooling operation is applied on each of the plurality of feature maps to yield a plurality of image representations. Each image representation is classified as one of a plurality of cell types.
Abstract:
A method for predicting short-term cloud coverage includes a computer calculating an estimated cloud velocity field at a current time value based on sky images. The computer determines a segmented cloud model based on the sky images, a future sun location corresponding to a future time value, and sun pixel locations at the future time value based on the future sun location. Next, the computer applies a back-propagation algorithm to the sun pixel locations using the estimated cloud velocity field to yield propagated sun pixel locations corresponding to a previous time value. Then, the computer predicts cloud coverage for the future sun location based on the propagated sun pixel locations and the segmented cloud model.
Abstract:
Independent subspace analysis (ISA) is used to learn (42) filter kernels for CLE images in brain tumor classification. Convolution (46) and stacking are used for unsupervised learning (44, 48) with ISA to derive the filter kernels. A classifier is trained (56) to classify CLE brain images based on features extracted using the filter kernels. The resulting filter kernels and trained classifier are used (60, 64) to assist in diagnosis of occurrence of brain tumors during or as part of neurosurgical resection. The classification may assist a physician in detecting whether CLE examined brain tissue is healthy or not and/or a type of tumor.
Abstract:
A method for performing cellular classification includes extracting a plurality of local feature descriptors from a set of input images and applying a coding process to covert each of the plurality of local feature descriptors into a multi-dimensional code. A feature pooling operation is applied on each of the plurality of local feature descriptors to yield a plurality of image representations and each image representation is classified as one of a plurality of cell types.
Abstract:
A method and system for classifying tissue endomicroscopy images are disclosed. Local feature descriptors are extracted from an endomicroscopy image. Each of the local feature descriptors is encoded using a learnt discriminative dictionary. The learnt discriminative dictionary includes class-specific sub-dictionaries and penalizes correlation between bases of sub-dictionaries associated with different classes. Tissue in the endomicroscopy image is classified using a trained machine learning based classifier based on the coded local feature descriptors encoded using a learnt discriminative dictionary.