摘要:
A method and apparatus for cooling hot gas streams in the temperature range 800° C. to 1600° C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.
摘要:
A pressurized transport oxy-combustor with different configurations is disclosed. Substantially pure oxygen is fed to the transport oxy-combustor under pressure to combust fossil fuels, generating steam for power generation. The end product is the flue gas containing substantially pure CO2 after moisture condensation. The low excess oxygen necessary to achieve complete combustion in the combustor is scavenged by adding another fuel so that substantially all oxygen fed to the combustor is completely consumed. The capability to operate the transport oxy-combustor as a circulating fluidized bed combustor at very high solids circulation rates makes it unnecessary to use recycled CO2 or flue gas as a means to moderate and control the combustion temperature. The temperature in the combustor is effectively controlled by relatively cooler circulating solids that enter the combustion zone. A small amount of CO2 is recycled for aeration and to convey solids fuel to the combustor.
摘要:
A system for depressurizing and cooling a high pressure, high temperature fine solid particles stream having entrained gas therein. In one aspect, the system has an apparatus for cooling the high pressure, high temperature fine solid particles stream having entrained gas therein and a pressure letdown device for depressurization by separating the cooled fine solid particles from a portion of the fine solid particles stream having entrained gas therein, resulting in a lower temperature, lower pressure outlet of solid particles for disposal or handling by downstream equipment.
摘要:
Disclosed are cooling and depressurization system equipment, arrangement and methods to cool solid particles from a coal gasifier operating at high temperature and pressure. Ash from the coal needs to be continuously withdrawn from a circulating fluidized bed gasifier to maintain the solids inventory in the gasifier. The system disclosed enables use of conventional materials of construction for heat transfer surfaces. The supports for the cooling surfaces are located on the lower temperature upper section of the primary cooler. The cooled solids along with the fluidizing gas exits the primary cooler to a secondary receiving vessel where the solids can be further cooled by conventional means. The fluidizing and entrained gas entering the secondary vessel is filtered and vented through a vent pressure control valve. The column of cooled solids in the secondary vessel is depressurized by a continuous depressurization system to low pressures which are sufficient for conveying the solids to silos for disposal. The system and methods proposed are equally applicable to many high temperature, high pressure processes that require cooling and depressurization of process solids.
摘要:
The improvements proposed in this invention provide a reliable apparatus and method to gasify low rank coals in a class of pressurized circulating fluidized bed reactors termed “transport gasifier.” The embodiments overcome a number of operability and reliability problems with existing gasifiers. The systems and methods address issues related to distribution of gasification agent without the use of internals, management of heat release to avoid any agglomeration and clinker formation, specific design of bends to withstand the highly erosive environment due to high solid particles circulation rates, design of a standpipe cyclone to withstand high temperature gasification environment, compact design of seal-leg that can handle high mass solids flux, design of nozzles that eliminate plugging, uniform aeration of large diameter Standpipe, oxidant injection at the cyclone exits to effectively modulate gasifier exit temperature and reduction in overall height of the gasifier with a modified non-mechanical valve.