摘要:
A method and system for controlling and adjusting light in interstitial photodynamic light therapy (IPDT) in a subject is disclosed. More particularly, a method for controlling the light in interstitial tumor photodynamic light therapy is described using a calculation method for determination of status of tissue during the PDT treatment. The status is used in a feedback loop to control the continued PDT treatment. Methods are disclosed that constitute pre-treatment and realtime dosimetry modules for IPDT on the whole prostate glandular tissue. The method includes reconstruction of the target geometry, optimization of source fiber positions within this geometry, monitoring of the light attenuation during the treatment procedure and updating individual fiber irradiation times to take into account any variation in tissue light transmission. A control device that is arranged to restrict delivery of therapeutic light treatment at least temporary in dependence of at least one attribute of one of photodynamic treatment parameters. In comparison to no treatment feedback, a significant undertreatment of the patient as well as damage to healthy organs at risk are avoided.
摘要:
A method and system for providing interstitial photodynamic and/ or photothermal therapy on a region of tissue in a body are disclosed. An optimized number of light sources and individual position of each of said light sources in said region of tissue as well as individual control parameters for each of said light sources is determined based on 3D or 4D image data of said region of tissue acquired by at least one image modality. Further, a computer based method of virtually planning a interstitial photodynamic and/or photothermal therapy session on a region of tissue in a body in a virtual environment is provided. A template for guiding said light sources in said tissue is based on production data from said virtual planning.
摘要:
A method and system for controlling and adjusting light in interstitial photodynamic light therapy (IPDT) in a subject is disclosed. More particularly, a method for controlling the light in interstitial tumor photodynamic light therapy is described using a calculation method for determination of status of tissue during the PDT treatment. The status is used in a feedback loop to control the continued PDT treatment. Methods are disclosed that constitute pre-treatment and realtime dosimetry modules for IPDT on the whole prostate glandular tissue. The method includes reconstruction of the target geometry, optimization of source fiber positions within this geometry, monitoring of the light attenuation during the treatment procedure and updating individual fiber irradiation times to take into account any variation in tissue light transmission. A control device that is arranged to restrict delivery of therapeutic light treatment at least temporary in dependence of at least one attribute of one of photodynamic treatment parameters. In comparison to no treatment feedback, a significant undertreatment of the patient as well as damage to healthy organs at risk are avoided.
摘要:
Control of interstitial photodynamic therapy (PDT) by means of modulation control and/or optical tomography are disclosed. Accurate reconstruction of optical properties in tissue treated by the PDT is provided. Optical tomography is used as an input for controlling dosimetry in said PDT system.
摘要:
Control of interstitial photodynamic therapy (PDT) by means of modulation control and/or optical tomography are disclosed. Accurate reconstruction of optical properties in tissue treated by the PDT is provided. Optical tomography is used as an input for controlling dosimetry in said PDT system.