摘要:
Provided is a wastewater treatment process capable of selectively and efficiently separating and removing a manganese precipitate with high purity from sulfuric acid-acidic wastewater containing aluminum, magnesium, and manganese. In the wastewater treatment for a sulfuric acid-acidic wastewater containing aluminum, magnesium, and manganese, a magnesium oxide is used for part or all of the neutralizing agent to be added, the magnesium oxide is produced through the following steps (1) to (4): (1) effluent wastewater obtained by separating aluminum and manganese from sulfuric acid-acidic wastewater is concentrated, and calcium contained in the effluent wastewater is precipitated as a calcium sulfate; (2) the solution obtained in (1) is further concentrated, and magnesium is precipitated and separated as a magnesium sulfate; (3) the magnesium sulfate separated in (2) is roasted together with a reducing agent to obtain a magnesium oxide and sulfurous acid gas; and (4) the magnesium oxide obtained in (3) is washed.
摘要:
Provided is a method for producing nickel powder, in which fine nickel powder used as seed crystals required for producing nickel powder is produced from a solution containing a nickel ammine sulfate complex depending on the amount required for producing the nickel powder. The method for producing nickel powder sequentially includes: a mixing step of adding, to a nickel ammine sulfate complex solution, an insoluble solid as seed crystals and a polyacrylate or lignosulfonate as a dispersant to form a mixed slurry; and a reduction and precipitation step of charging a reaction vessel with the mixed slurry and blowing hydrogen gas into the mixed slurry in the reaction vessel to reduce nickel complex ions in the mixed slurry to form nickel precipitate on the surface of the insoluble solid, wherein the amount of the dispersant added in the mixing step is controlled to control the number of the nickel powder obtained by formation of the nickel precipitate in the reduction and precipitation step.
摘要:
Provided is a method for separating impurities and cobalt without using an electrolysis process from a cobalt chloride solution containing impurities and producing a high purity cobalt sulfate. The production method for cobalt sulfate includes: a copper removal step (S1) of adding a sulfurizing agent to a cobalt chloride solution containing one or more impurities of copper, zinc, manganese, calcium, and magnesium and generating a precipitate of sulfide of copper to separate to remove copper; a neutralization step (S2) of adding a neutralizer or a carbonation agent to a cobalt chloride solution having undergone through the copper removal step (S1) and generating cobalt hydroxide or basic cobalt carbonate to separate magnesium; a leaching step (S3) of adding sulfuric acid to the cobalt hydroxide or the basic cobalt carbonate to obtain cobalt sulfate solution; and a solvent extraction step (S4) of bringing an organic solvent containing an alkyl phosphoric acid-based extractant to the cobalt sulfate solution and extracting zinc, manganese, and calcium into the organic solvent to separate to remove zinc, manganese, and calcium. These steps are sequentially executed.
摘要:
It is an object to provide a method for producing magnesium oxide by which magnesium oxide being high in purity and low in impurity content can be produced simply and efficiently from a sulfuric acid solution containing magnesium and calcium such as waste water. In the present invention, calcium is precipitated as calcium sulfate and separated by concentrating a sulfuric acid solution containing magnesium and calcium, and magnesium is precipitated as magnesium sulfate and separated by further concentrating the solution resulting from the separation of calcium. The separated magnesium sulfate is roasted together with a reductant, so that magnesium oxide and sulfur dioxide are obtained. The resulting magnesium oxide is washed to produce magnesium oxide with high purity.
摘要:
Provided is a wastewater treatment process capable of selectively and efficiently separating and removing a manganese precipitate with high purity from sulfuric acid-acidic wastewater containing aluminum, magnesium, and manganese. In the wastewater treatment for a sulfuric acid-acidic wastewater containing aluminum, magnesium, and manganese, a magnesium oxide is used for part or all of the neutralizing agent to be added, the magnesium oxide is produced through the following steps (1) to (4): (1) effluent wastewater obtained by separating aluminum and manganese from sulfuric acid-acidic wastewater is concentrated, and calcium contained in the effluent wastewater is precipitated as a calcium sulfate; (2) the solution obtained in (1) is further concentrated, and magnesium is precipitated and separated as a magnesium sulfate; (3) the magnesium sulfate separated in (2) is roasted together with a reducing agent to obtain a magnesium oxide and sulfurous acid gas; and (4) the magnesium oxide obtained in (3) is washed.
摘要:
It is an object to provide a method for producing magnesium oxide by which magnesium oxide being high in purity and low in impurity content can be produced simply and efficiently from a sulfuric acid solution containing magnesium and calcium such as waste water. In the present invention, calcium is precipitated as calcium sulfate and separated by concentrating a sulfuric acid solution containing magnesium and calcium, and magnesium is precipitated as magnesium sulfate and separated by further concentrating the solution resulting from the separation of calcium. The separated magnesium sulfate is roasted together with a reductant, so that magnesium oxide and sulfur dioxide are obtained. The resulting magnesium oxide is washed to produce magnesium oxide with high purity.
摘要:
Provided is a method for separating impurities and cobalt without using an electrolysis process from a cobalt chloride solution containing impurities and producing a high purity cobalt sulfate. The production method includes: a first solvent extraction step (S1) of bringing an organic solvent containing an alkyl phosphoric acid-based extractant into contact with a cobalt chloride solution containing impurities, and extracting zinc, manganese, and calcium into the organic solvent to separate to remove zinc, manganese, and calcium; a copper removal step (S2) of adding a sulfurizing agent to a cobalt chloride solution and generating a precipitate of sulfide of copper to separate to remove copper; a second solvent extraction step (S3) of bringing an organic solvent containing a carboxylic acid-based extractant into contact with a cobalt chloride solution and back extracting cobalt with sulfuric acid after extracting cobalt into the organic solvent to obtain cobalt sulfate solution; and a crystallization step (S4) of the cobalt sulfate solution obtained after having undergone through the second solvent extraction step (S3). These steps are sequentially executed. Without using an electrolysis process, a high purity cobalt sulfate is directly produced by separating cobalt and impurities containing manganese.
摘要:
Provided is a process for producing hematite, which is capable of producing low-sulfur-grade hematite in a HPAL process of a nickel oxide ore. Magnesium oxide produced by passing through the steps (1) to (5) is used as a neutralizing agent for preliminary neutralization treatment of a leached slurry obtained by leaching a nickel oxide ore at a high temperature and high pressure with sulfuric acid added thereto. (1) A neutralizing agent is added to a leachate, which is obtained by leaching a nickel oxide ore, to separate impurities, and a sulfurizing agent is added to the resulting neutralized solution to obtain sulfides of nickel and cobalt, followed by separating the sulfurized solution; (2) discharge waste water, which is obtained by adding a neutralizing agent to the sulfurized solution to separate aluminum and manganese, is concentrated to precipitate and separate calcium contained in the discharge waste water as calcium sulfate; (3) the resulting solution is further concentrated to precipitate magnesium in the solution as magnesium sulfate; (4) the magnesium sulfate is roasted together with a reducing agent to obtain magnesium oxide and a sulfurous gas; and (5) the magnesium oxide is washed.
摘要:
It is an object to provide a method for producing magnesium oxide by which magnesium oxide being high in purity and low in impurity content can be produced simply and efficiently from a sulfuric acid solution containing magnesium and calcium such as waste water. In the present invention, calcium is precipitated as calcium sulfate and separated by concentrating a sulfuric acid solution containing magnesium and calcium, and magnesium is precipitated as magnesium sulfate and separated by further concentrating the solution resulting from the separation of calcium. The separated magnesium sulfate is roasted together with a reductant, so that magnesium oxide and sulfur dioxide are obtained. The resulting magnesium oxide is washed to produce magnesium oxide with high purity.